DOI QR코드

DOI QR Code

전기자동차 내 리튬이온전지 화재로 발생하는 독성가스의 위험성 분석

Consequence Analysis of Toxic Gases Generated by Fire of Lithium Ion Batteries in Electric Vehicles

  • 오의영 (아주대학교 환경안전공학과) ;
  • 민동석 (아주대학교 환경안전공학과) ;
  • 한지윤 (아주대학교 환경안전공학과) ;
  • 정승호 (아주대학교 환경안전공학과) ;
  • 강태선 (세명대학교 보건안전공학과)
  • Oh, Eui-young (Dept. of Environmental and safety Engineering, Ajou University) ;
  • Min, Dong Seok (Dept. of Environmental and safety Engineering, Ajou University) ;
  • Han, Ji Yun (Dept. of Environmental and safety Engineering, Ajou University) ;
  • Jung, Seungho (Dept. of Environmental and safety Engineering, Ajou University) ;
  • Kang, Tae-sun (Dept. of Health and Safety Engineering, Semyung University)
  • 투고 : 2018.11.01
  • 심사 : 2019.02.20
  • 발행 : 2019.02.28

초록

휴대용 전자기기의 시장이 성장함에 따라서 Lithium Ion Battery(LIB)의 수요 또한 증가하고 있다. LIB는 다른 2차 전지에 비해 높은 효율성을 보이지만 열 폭주(Thermal runaway)로 인한 폭발/화재의 위험성이 있다. 특히나 대용량 LIB cell을 탑재한 Electric Vehicle(EV)의 경우 화재로 발생하는 대량의 독성 가스로 인한 위험성 또한 존재한다. 따라서 사고 피해를 최소화하기 위한 EV 화재로 발생하는 독성 가스의 위험성 분석이 필요하다. 이 연구에서는 EV의 화재로 발생하는 독성 가스의 유동을 전산유체역학(Computational Fluid Dynamic; CFD)을 이용하여 해석하였다. 문헌 조사 결과와 국내 EV 자료를 기반으로 시나리오를 설정하여 시나리오 발생 경과시간에 따른 독성 가스의 확산을 수치 해석하여 위험성에 대하여 분석 하였다. 이 연구는 EV 화재로 인한 독성 가스의 위험성을 분석하여 사고 발생에 의한 인명, 재산피해를 최소화하는데 의의를 가진다.

As the market for portable electronic devices expands, the demand for Lithium Ion Battery (LIB) is also increasing. LIB has higher efficiency than other secondary batteries, but there is a risk of explosion / fire due to thermal runaway reaction. Especially, Electric Vehicles (EV) equipped with a large capacity LIB cell also has a danger due to a large amount of toxic gas generated by a fire. Therefore, it is necessary to analyze the risk of toxic gas generated by EV fire to minimize accident damage. In this study, the flow of toxic gas generated by EV fire was numerically analyzed using Computational Fluid Dynamic. Scenarios were established based on literature data and EV data to confirm the effect distance according to time and exposure standard. The purpose of this study is to analyze the risk of toxic gas caused by EV fire and to help minimize the loss of life and property caused by accidents.

키워드

GSGSBE_2019_v23n1_54_f0001.png 이미지

Fig. 1. HF production rate by LIB[9].

GSGSBE_2019_v23n1_54_f0002.png 이미지

Fig. 2. Boundary condition.

GSGSBE_2019_v23n1_54_f0003.png 이미지

Fig. 3. HF production rate by LIB.

GSGSBE_2019_v23n1_54_f0004.png 이미지

Fig. 4. Air flow vector of simulation zone.

GSGSBE_2019_v23n1_54_f0005.png 이미지

Fig. 5. HF Dispersion before chemical reaction.

GSGSBE_2019_v23n1_54_f0006.png 이미지

Fig. 6. HF Dispersion after chemical reaction.

Table 1. LIB fire and explosion accident[5]

GSGSBE_2019_v23n1_54_t0001.png 이미지

Table 2. Mass of HF generated from EV

GSGSBE_2019_v23n1_54_t0002.png 이미지

Table 3. Health Effects and Explanations of AEGL Levels in the US EPA

GSGSBE_2019_v23n1_54_t0003.png 이미지

Table 4. Toxic distance by fire of EV bus

GSGSBE_2019_v23n1_54_t0004.png 이미지

참고문헌

  1. Tarascon, J. -M., and Armand, M., "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359-367, (2001) https://doi.org/10.1038/35104644
  2. Jeong, M. N., "A Study On the Explosion Potential Of Lithium Battery", Journal of Fire Investigation Society of Korea, 8(1), 53-85, (2017)
  3. Deng, D., Kim, M. G., Lee, J., Y., and Cho, J., "Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries", Energy & Environmental Science, 2, 818-837, (2009) https://doi.org/10.1039/b823474d
  4. Balakrishnan P., G., Ramesh, R., and Kumar, T., P., "Safety mechanisms in lithium-ion batteries", Journal of Power Sources, 155, 401-414, (2006) https://doi.org/10.1016/j.jpowsour.2005.12.002
  5. Wang, Q., Ping, P., Chu, G., Sun, J., and Chen, C., "Thermal runaway caused fire and explosion of lithium ion battery", Journal of power sources, 208, 210-224, (2012) https://doi.org/10.1016/j.jpowsour.2012.02.038
  6. Truchot, B., Fouillen, F., and Collet, S., "An experimental evaluation of toxic gas emissions from vehicle fires", Fire Safety Journal, 97, 111-118, (2018) https://doi.org/10.1016/j.firesaf.2017.12.002
  7. Lebedeva, N. P., and Brett, L. B., "Considerations on the Chemical Toxicity of Contemporary Li-Ion Battery Electrolytes and Their Components", Journal of The Electrochemical Society, 163(6) 821-830, (2016)
  8. Nedjalkov, A., Meyer, J., Kohring, M., Doering, A., Angelmahr, M., Dahle, S., Sander, A., Fischer, A.,and Schade, W., "Toxic Gas Emissions from Damaged Lithium Ion Batteries-Analysis and Safety Enhancement Solution", Batteries, 2(1), 1-10, (2016) https://doi.org/10.3390/batteries2010001
  9. Larsson, F., Andersson, P. Blomqvist, P., and Melander, B., -E., "Toxic fluoride gas emissions from lithium-ion battery fires", Scientific Reports, 7, 1-13, (2017) https://doi.org/10.1038/s41598-016-0028-x
  10. Yang, H., and Shen, X., D., "Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell", Journal of Power Sources, 167, 515-519, (2007) https://doi.org/10.1016/j.jpowsour.2007.02.029
  11. Yun, C., S., "Standard for emergencies (leaks, accidents) of chemical substances", Korean Industrial Health Association, 3, 22-31, (2016)
  12. Hanna, S., R., Strimaitis., D., G., and Chang J., C., "Evaluation of fourteen hazardous gas models with ammonia and hydrogen fluoride field data", Journal of Hazardous Materials, 26, 127-158, (1991) https://doi.org/10.1016/0304-3894(91)80002-6
  13. Versteeg, G., K., and Malalasekera, W., An Introduction to computational fluid dynamics : The Finite Volume Method, 2nd ed, Pearson Education, London, (2007)
  14. Krewski, D., and Walker, B., Acute Exposure Guideline Levels for Selected Airborne Chemicals, Volume 4, The national academies press, Washington D.C., (2004)