Fig. 1. HF production rate by LIB[9].
Fig. 2. Boundary condition.
Fig. 3. HF production rate by LIB.
Fig. 4. Air flow vector of simulation zone.
Fig. 5. HF Dispersion before chemical reaction.
Fig. 6. HF Dispersion after chemical reaction.
Table 1. LIB fire and explosion accident[5]
Table 2. Mass of HF generated from EV
Table 3. Health Effects and Explanations of AEGL Levels in the US EPA
Table 4. Toxic distance by fire of EV bus
참고문헌
- Tarascon, J. -M., and Armand, M., "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359-367, (2001) https://doi.org/10.1038/35104644
- Jeong, M. N., "A Study On the Explosion Potential Of Lithium Battery", Journal of Fire Investigation Society of Korea, 8(1), 53-85, (2017)
- Deng, D., Kim, M. G., Lee, J., Y., and Cho, J., "Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries", Energy & Environmental Science, 2, 818-837, (2009) https://doi.org/10.1039/b823474d
- Balakrishnan P., G., Ramesh, R., and Kumar, T., P., "Safety mechanisms in lithium-ion batteries", Journal of Power Sources, 155, 401-414, (2006) https://doi.org/10.1016/j.jpowsour.2005.12.002
- Wang, Q., Ping, P., Chu, G., Sun, J., and Chen, C., "Thermal runaway caused fire and explosion of lithium ion battery", Journal of power sources, 208, 210-224, (2012) https://doi.org/10.1016/j.jpowsour.2012.02.038
- Truchot, B., Fouillen, F., and Collet, S., "An experimental evaluation of toxic gas emissions from vehicle fires", Fire Safety Journal, 97, 111-118, (2018) https://doi.org/10.1016/j.firesaf.2017.12.002
- Lebedeva, N. P., and Brett, L. B., "Considerations on the Chemical Toxicity of Contemporary Li-Ion Battery Electrolytes and Their Components", Journal of The Electrochemical Society, 163(6) 821-830, (2016)
- Nedjalkov, A., Meyer, J., Kohring, M., Doering, A., Angelmahr, M., Dahle, S., Sander, A., Fischer, A.,and Schade, W., "Toxic Gas Emissions from Damaged Lithium Ion Batteries-Analysis and Safety Enhancement Solution", Batteries, 2(1), 1-10, (2016) https://doi.org/10.3390/batteries2010001
- Larsson, F., Andersson, P. Blomqvist, P., and Melander, B., -E., "Toxic fluoride gas emissions from lithium-ion battery fires", Scientific Reports, 7, 1-13, (2017) https://doi.org/10.1038/s41598-016-0028-x
- Yang, H., and Shen, X., D., "Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell", Journal of Power Sources, 167, 515-519, (2007) https://doi.org/10.1016/j.jpowsour.2007.02.029
- Yun, C., S., "Standard for emergencies (leaks, accidents) of chemical substances", Korean Industrial Health Association, 3, 22-31, (2016)
- Hanna, S., R., Strimaitis., D., G., and Chang J., C., "Evaluation of fourteen hazardous gas models with ammonia and hydrogen fluoride field data", Journal of Hazardous Materials, 26, 127-158, (1991) https://doi.org/10.1016/0304-3894(91)80002-6
- Versteeg, G., K., and Malalasekera, W., An Introduction to computational fluid dynamics : The Finite Volume Method, 2nd ed, Pearson Education, London, (2007)
- Krewski, D., and Walker, B., Acute Exposure Guideline Levels for Selected Airborne Chemicals, Volume 4, The national academies press, Washington D.C., (2004)