• Title/Summary/Keyword: computational fluid dynamic

Search Result 506, Processing Time 0.035 seconds

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

Structural and Vibration Analyses of 3MW Class Wind-Turbine Blade Using CAE Technique (CAE 기법을 활용한 3MW급 풍력발전기 로터의 구조 및 진동해석)

  • Kim, Yo-Han;Park, Hyo-Geun;Kim, Dong-Hyun;Kim, Dong-Man;Hwang, Byoung-Sun;Park, Ji-Sang;Jung, Sung-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2008
  • In this study, computer applied engineering (CAE) techniques are fully used to conduct structural and dynamic analyses of a huge composite rotor blade. Computational fluid dynamics is used to predict aerodynamic load of the rotating wind-turbine blade model. Static and dynamic structural analyses are conducted based on finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results for aerodynamic load, static stress, buckling and dynamic analyses are presented and characteristics of structural behaviors are investigated herein.

Fluid Dynamic Efficiency of an Anatomically Correct Total Cavopulmonary Connection: Flow Visualizations and Computational Fluid Dynamic Studies

  • Yun, S.H.;Kim, S.Y.;Kim, Y.H.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.2
    • /
    • pp.36-41
    • /
    • 2003
  • Both flow visualizations and computational fluid dynamics were performed to determine hemodynamics in a total cavopulmonary connection (TCPC) model for surgically correcting congenital heart defects. From magnetic resonance images, an anatomically correct glass model was fabricated to visualize steady flow. The total flow rates were 4, 6 and 8L/min and flow rates from SVC and IVC were 40:60. The flow split ratio between LPA and RPA was varied by 70:30, 60:40 and 50:50. A pressure-based finite-volume software was used to solve steady flow dynamics in TCPC models. Results showed that superior vena cava(SVC) and inferior vena cava(IVC) flow merged directly to the intra-atrial conduit, creating two large vortices. Significant swirl motions were observed in the intra-atrial conduit and pulmonary arteries. Flow collision or swirling flow resulted in energy loss in TCPC models. In addition, a large intra-atrial channel or a sharp bend in TCPC geometries could influence on energy losses. Energy conservation was efficient when flow rates in pulmonary branches were balanced. In order to increase energy efficiency in Fontan operations, it is necessary to remove a flow collision in the intra-atrial channel and a sharp bend in the pulmonary bifurcation.

  • PDF

An efficient three-dimensional fluid hyper-element for dynamic analysis of concrete arch dams

  • Lotfi, Vahid
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.683-698
    • /
    • 2006
  • The accurate dynamic analysis of concrete arch dams relies heavily on employing a three-dimensional semi-infinite fluid element. The usual method for calculating the impedance matrix of this fluid hyper-element is dependent on the solution of a complex eigen-value problem for each frequency. In the present study, an efficient procedure is proposed which simplifies this procedure amazingly, and results in great computational time saving. Moreover, the accuracy of this technique is examined thoroughly and it is concluded that efficient procedure is incredibly accurate under all practical conditions.

The Effect of Fluid-Structure Interaction on the Dynamic Response of Reactor Internals (유체-구조물 상호작용이 원자로내부구조물의 동적응답에 미치는 영향)

  • 정명조;박찬국;황원걸
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.73-82
    • /
    • 1993
  • Investigated in this paper is the effect of fluid-structure interaction between reactor internal components due to their immersion in a confining fluid on the dynamic responses. A non-linear mathematical model is developed for the dynamic analysis of the reactor internals, which includes lumped masses, stiffnesses and hydrodynamic couplings. The hydrodynamic mass matrix which characterizes the fluid-structure interaction is calculated. Also, the equations of motion containing hydrodynamic mass matrix are presented. The responses of the reactor internals due to seismic and pipe break excitations are obtained for the case of with- and without-hydrodynamic couplings and the different response characteristics are investigated.

  • PDF

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

Computational modeling of coupled fluid-structure systems with applications

  • Kerboua, Y.;Lakis, A.A.;Thomas, M.;Marcouiller, L.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.1
    • /
    • pp.91-111
    • /
    • 2008
  • This paper outlines the development of a computational model in order to analyze the dynamic behaviour of coupled fluid-structure systems such as a) liquid containers, b) a set of parallel or radial plates. In this work a hybrid fluid-solid element is developed, capable of simulating both membrane and bending effects of the plate. The structural mass and stiffness matrices are determined using exact integration of governing equations which are derived using a combination of classical plate theory and a finite element approach. The Bernoulli equation and velocity potential function are used to describe the liquid pressure applied on the solid-fluid element. An impermeability condition assures a permanent contact at the fluid-structure interface. Applications of this model are presented for both parallel and radial plates as well as fluid-filled rectangular reservoir. The effect of physical parameters on the dynamic behaviour of a coupled fluid-structure system is investigated. The results obtained using the presented approach for dynamic characteristics such as natural frequency are in agreement to those calculated using other theories and experiments.