DOI QR코드

DOI QR Code

An Analysis of Problem-Posing Tasks in 7th grade Mathematics Textbooks Based on 2015 National Mathematics Curriculum

2015 개정 교육과정에 따른 수학교과서 문제제기 과제 분석 : 중학교 1학년을 중심으로

  • Received : 2019.05.01
  • Accepted : 2019.05.08
  • Published : 2019.05.15

Abstract

This study analyzed how problem-posing tasks included in Korean middle school mathematics textbooks were distributed in terms of content area, task type, and context of task to investigate that the mathematics textbooks are giving students ample opportunities for problem-posing activities. The analysis of 10 mathematics textbooks for first grade in middle school according to the revised mathematics curriculum in 2015 found that the problem-posing tasks contained in the textbooks are insufficient in quantity and not evenly distributed in terms of content areas. There were also more problem-posing tasks with relatively moderate constraints than those with strong or weak constraints in terms of mathematical constraints. In addition, there were more problem-posing tasks that were not requiring students to make a new context, and more often camouflage contexts were used. Based on this, implications for improving mathematics problem-posing tasks in mathematics textbook were suggested.

이 연구는 우리나라 중등 수학교과서가 학생들에게 문제제기 활동의 기회를 충분히 주고 있는지 확인하기 위하여 2015 개정 수학과 교육과정에 따른 중학교 1학년 수학교과서의 문제제기 과제를 내용 영역, 과제 유형, 과제 맥락 등의 측면에서 분석하였다. 2015년 개정 수학과 교육과정에 따른 중학교 1학년 수학교과서 10종을 분석한 결과, 교과서에 포함된 문제제기 과제의 수는 적은편이며, 내용 영역별로 과제가 고르게 분포되어 있지 않았다. 문제제기 과제의 수학적 제약의 정도에 따라 분석한 결과, 수학적 제약 조건이 강하거나 약한 과제보다는 상대적으로 중간 정도의 제약 조건을 가지는 문제제기 과제가 더 많았다. 맥락 구성 요구에 따른 분석 결과, 학생들에게 새로운 맥락을 요구하지 않는 문제제기 과제가 더 많았고, 이러한 과제들은 주로 가장된 맥락을 사용하고 있었다. 이러한 결과를 바탕으로 수학교과서에서의 문제제기 과제 활용을 위한 시사점을 제시하였다.

Keywords

SHGHFM_2019_v33n2_123_f0001.png 이미지

[그림 III-1] 수학 과제 개수 구분 사례(류희찬 외, 2018, p. 180)

SHGHFM_2019_v33n2_123_f0002.png 이미지

[그림 III-2] SC 코드로 분류된 과제(고호경 외, 2018, p. 132)

SHGHFM_2019_v33n2_123_f0003.png 이미지

[그림 III-3] NC2 과제로 분류된 과제(이준열 외, 2018, p. 105)

SHGHFM_2019_v33n2_123_f0004.png 이미지

[그림 IV-1] 동일한 수학적 관계 혹은 구조를 가지는 질문 제기하기 과제(유형2)(이준열 외, 2018, p. 89)

SHGHFM_2019_v33n2_123_f0005.png 이미지

[그림 IV-2] 주어진 정보에 기반을 둔 질문 제기하기 과제(유형4)(류희찬 외, 2018, p. 284)

SHGHFM_2019_v33n2_123_f0006.png 이미지

[그림 IV-3] 새로운 맥락의 구성을 요구하는 과제(김원경 외, 2018, p. 114)

SHGHFM_2019_v33n2_123_f0007.png 이미지

[그림 V-1] 적절하고 본질적인 맥락을 가지는 문제제기 과제 (김구연, 전미현, 2017, p. 308의 [그림 IV-11]에서 저자 수정)

<표 III-1> 내용 영역에 따른 중학교 1학년 수학교과서에 포함된 수학과제 개수

SHGHFM_2019_v33n2_123_t0001.png 이미지

<표 IV-1> 내용 영역에 따른 중학교 1학년 수학교과서 문제제기 과제 분포

SHGHFM_2019_v33n2_123_t0002.png 이미지

<표 IV-2> 수학적 제약에 따른 중학교 1학년 수학교과서 문제제기 과제 분포

SHGHFM_2019_v33n2_123_t0003.png 이미지

<표 IV-3> 맥락 구성 요구에 따른 중학교 1학년 수학교과서 문제제기 과제 분포

SHGHFM_2019_v33n2_123_t0004.png 이미지

References

  1. Kang, O., Kwon E., Hwang H., Jeon D., Noh, J., Woo, H., ... Jung, K. (2018). Secondary mathematics 1. Seoul: Dong-A.
  2. Ko, H., Kim, E., Kim, I., Lee., B., Han, J., Choi S., ... Choi, H. (2018). Secondary mathematics 1. Seoul: Gyohagsa.
  3. Ministry of Education Human Resources Development (2009). Mathematics curriculum. Seoul: Ministry of Education Human Resources Development.
  4. Ministry of Education, Science and Technology (2011). Mathematics curriculum. Seoul: Ministry of Education, Science and Technology.
  5. Ministry of Education (2015). Mathematics curriculum. Seoul: Ministry of Education.
  6. Ko, J. (2015). The analysis of problem posing activities and students' performance in the 4-1 textbook and workbook. Journal of the Korean School Mathematics Society, 18(1), 103-122.
  7. Kim, G. T. & Ryu, S. R. (2013). An analysis of problem posing in the 5th and 6th grade mathematics textbooks and errors in problem posing of 6th graders. Journal of Elementary Mathematics Education in Korea, 17(2), 321-350.
  8. Kim, G. & Jeon, M. (2017). Exploring how middle-school mathematics textbooks on functions provide students an opportunity-to-learn. School Mathematics, 19(2), 289-317.
  9. Kim, M. (2013). Secondary mathematics teachers' use of mathematics textbooks and teachers' guide. School Mathematics, 15(3), 503-531.
  10. Kim, W., Cho M., Oh, J., Lim, S., Kim, D., Kang, S., ... Kim, Y. (2018). Secondary mathematics 1. Seoul: Visang.
  11. Kim, H., Na, G., Lee, M., Lee, Y., & Kwon, Y. (2018). Secondary mathematics 1. Seoul: Sinsago.
  12. Ryu, H., Sunwoo, H., Shin, B., Jeong, D., Jang, Y., Sul, J., & Park, S. (2018). Secondary mathematics 1. Seoul: Chunjae.
  13. Park, K., Lee, J., Kim, J., Nam, J., Kim, N., Lim, J., ... Hwang, J. (2018). Secondary mathematics 1. Seoul: Dong-A.
  14. Lee, J., Choi, B., Kim, D., Lee, J., Kim, S., Won, Y., Kang, H., ... Kang, S. (2018). Secondary mathematics 1. Seoul: Chunjae.
  15. Lim, M. K. (2011). A study on the analysis for problem-posing contents of elementary school first and second grade mathematics textbooks by the 7th curriculum and investigation for children's disposition to mathematical problem-posing. School Mathematics, 3(2), 295-324
  16. Jang, K., Kang, H., Kim, D., Ahn, J., Lee, D., Park, J., ... Goo, N. (2018). Secondary mathematics 1. Seoul: Jihaksa.
  17. Joo, M., Kang, E., Kang, S., Lee, H., Kang, S., Oh, H., & Kwon, S. (2018). Secondary mathematics 1. Seoul: Kumsung.
  18. Choi, S., & Mok, Y. (2011). Problem fabrication in algebra of grade 7 under the curriculum revised in 2007. Journal of the Korean School Mathematics Society, 14(2), 163-178.
  19. Hwang, S., Kang, B., Yoon, G., Lee, K., Jang, H., Jung, J., & Cho, S. (2018). Secondary mathematics 1. Seoul: Mirae-N.
  20. Andersson, A., Valero, P., & Meaney, T. (2015). "I am [not always] a maths hater": Shifting students' identity narratives in context. Educational Studies in Mathematics, 90(2), 143-161. https://doi.org/10.1007/s10649-015-9617-z
  21. Cai, J., & Hwang, S. (2002). Generalized and generative thinking in US. and Chinese students' mathematical problem solving and problem posing. The Journal of Mathematical Behavior, 21, 401-421 https://doi.org/10.1016/S0732-3123(02)00142-6
  22. Cai, J., & Jiang, C. (2017). An analysis of problem-posing tasks in Chinese and US elementary mathematics textbooks. International Journal of Science and Mathematics Education, 15(8), 1521-1540. https://doi.org/10.1007/s10763-016-9758-2
  23. Cai, J., Jiang, C., Hwang, S., Nie, B. & Hu, D. (2016). Does textbook support the implementation of mathematical problem posing in classrooms? An international comparative perspective. In P. Felmer, J. Kilpatrick & E. Pehkonen (Eds.), Posing and solving mathematical problems: advances and new perspectives (pp. 3-22). New York, NY: Springer.
  24. Common Core State Standards Initiative. (2010). Common Core State Standards for mathematics. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
  25. Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D., & Sriraman, B. (2005). An empirical taxonomy of problem posing processes. ZDM, 37(3), 149-158. https://doi.org/10.1007/s11858-005-0004-6
  26. Chinese Ministry of Education. (2011). Mathematics curriculum standard of compulsory education (2011 version). Beijing, China: Beijing normal university press.
  27. Chow, A. F., & Van Haneghan, J. P. (2016). Transfer of solutions to conditional probability problems: effects of example problem format, solution format, and problem context. Educational Studies in Mathematics, 93(1), 67-85. https://doi.org/10.1007/s10649-016-9691-x
  28. Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D., & Sriraman, B. (2005). An empirical taxonomy of problem posing processes. ZDM, 37(3), 149-158. https://doi.org/10.1007/s11858-005-0004-6
  29. De lange, J. (1995) 'Assessment: no change without problems", in Romberg, T (Ed.}, Reform in school mathematics and authentic assesment, Albany, NY, SUNY Press, 87-172.
  30. English, L. D. (1997). The development of fifth-grade children's problem-posing abilities. Educational studies in Mathematics, 34, 183-217. https://doi.org/10.1023/A:1002963618035
  31. Freudenthal, H. (1991). Revisiting mathematics education. Dordrecht: Kluwer Academic Publishers.
  32. Leung, S. (2013). Teachers implementing mathematical problem posing in the classroom: challenges and strategies. Educational Studies in Mathematics, 83, 103-116. https://doi.org/10.1007/s10649-012-9436-4
  33. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  34. Krulik, S., & Rudnick, J. (1984). Sourcebook for teaching problem solving. Boston: Allyn and Bacon.
  35. O'Keeffe, L., & O'Donoghue, J. (2015). A role for language analysis in mathematics textbook analysis. International Journal of Science and Mathematics Education, 13(3), 605-630. https://doi.org/10.1007/s10763-013-9463-3
  36. Schoenfeld, A. H. (1989). Teaching mathematical thinking and problem solving. In L. B. Resnick & L. E. Klopfer (Eds.), Toward the thinking curriculum: current cognitive research (pp. 83-103). Alexandria, VA: Association for Supervision and Curriculum Development.
  37. Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19-28.
  38. Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM, 97(3), 75-80.
  39. Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. Journal for Research in Mathematics Education, 27, 521-539. https://doi.org/10.2307/749846
  40. Singer, F. M., & Voica, C. (2015). Is problem posing a tool for identifying and developing mathematical creativity? In F. M. Singer, N. Ellerton, & J. Cai (Eds.), Mathematical problem posing: From research to effective practice (pp. 141-174). New York: Springer.
  41. Siswono, T. Y. E. (2010). Leveling students' creative thinking in solving and posing mathematical problem. Indonesian Mathematical Society Journal on Mathematics Education, 1(1), 20-41.
  42. Stein, M. K. & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275. https://doi.org/10.5951/MTMS.3.4.0268
  43. Stouraitis, K., Potari, D., & Skott, J. (2017). Contradictions, dialectical oppositions and shifts in teaching mathematics. Educational studies in mathematics, 95(2), 203-217. https://doi.org/10.1007/s10649-017-9749-4
  44. Stoyanova, E. (1998). Problem posing in mathematics classrooms. In A. McIntosh & N. Ellerton(Eds.), Research in mathematics education: A contemporary perspective (pp. 164-185). Edith Cowan University: MASTEC.
  45. Sullivan, P., Zevenbergen, R., & Mousley, J. (2003). The Contexts of mathematics tasks and the context of the classroom: Are we including all students?. Mathematics Education Research Journal, 15(2), 107-121. https://doi.org/10.1007/BF03217373
  46. Van Den Heuvel-Panhuizen, M. (2005). The role of contexts in assessment problems in mathematics. For the learning of mathematics, 25(2), 2-23.
  47. Van Harpen, X. Y., & Presmeg, N. C. (2013). An investigation of relationships between students' mathematical problem-posing abilities and their mathematical content knowledge. Educational Studies in Mathematics, 83, 117-132. https://doi.org/10.1007/s10649-012-9456-0
  48. Voica, C., & Singer, F. M. (2013). Problem modification as a tool for detecting cognitive flexibility in school children. ZDM, 45(2), 267-279. https://doi.org/10.1007/s11858-013-0492-8
  49. Wernet, J. L. W. (2017) Classroom Interactions Around Problem Contexts and Task Authenticity in Middle School Mathematics. Mathematical Thinking and Learning, 19(2), 69-94. https://doi.org/10.1080/10986065.2017.1295419
  50. Wijaya, A.,, Van den Heuvel-Panhuizen, M., & Doorman, M. (2015). Opportunity-to-learn context-based tasks provided by mathematics textbooks. Educational Studies in Mathematics, 89(1), 41-65. https://doi.org/10.1007/s10649-015-9595-1
  51. Xie, J., & Masingila, J. O. (2017). Examining interactions between problem posing and problem solving with prospective primary teachers: A case of using fractions. Educational Studies in Mathematics, 96(1), 101-118. https://doi.org/10.1007/s10649-017-9760-9
  52. Yuan, X., & Sriraman, B. (2011). An exploratory study of relationships between students' creativity and mathematical problem-posing abilities: Comparing Chinese and U.S students. In B. Sriraman & K. Lee (Eds.), The elements of creativity and giftedness in mathematics (pp. 5-28). Rotterdam: Sense Publisher.

Cited by

  1. 수학 교과 역량 과제 비교 분석 : 2015 개정 중학교 2학년 수학 교과서 중심으로 vol.20, pp.6, 2019, https://doi.org/10.5392/jkca.2020.20.06.531