DOI QR코드

DOI QR Code

Mobile Augmented Reality based CFD Simuation Post-Processor

모바일 증강현실 기술을 활용한 유체시뮬레이션 후처리기 연구

  • 박상진 (한국과학기술정보연구원 가상설계센터) ;
  • 김명일 (한국과학기술정보연구원 가상설계센터) ;
  • 김호윤 (한국과학기술정보연구원 가상설계센터) ;
  • 서동우 (한국과학기술정보연구원 가상설계센터)
  • Received : 2019.01.22
  • Accepted : 2019.04.05
  • Published : 2019.04.30

Abstract

The convergence of engineering and IT technology has brought many changes to the industry as well as academic research. In particular, computer simulation technology has evolved to a level that can accurately simulate actual physical phenomena and analyze them in real time. In this paper, we describe the CFD technology, which is mainly used in industry, and the post processor that uses the augmented reality which is emerging as the post-processing. Research on the visualization of fluid simulation results using AR technology is actively being carried out. However, due to the large size of the result data, it is limited to researches that are published in a desktop environment. Therefore, it is limitation that needs to be reviewed in actual space. In this paper, we discuss how to solve these problems. We analyze the fluid analysis results in the post-processing, and then perform optimizing data (more than 70%)to support operation in the mobile environment. In the visualization, lightweight data is used to perform real-time tracking using cloud computing, The analysis result is matched to the screen and visualized. This allows the user to review and analyze the fluid analysis results in an efficient and immersive manner in the various spaces where the simulation is performed.

엔지니어링과 IT기술의 융합은 학문적 연구뿐 아니라 산업에도 많은 변화를 가져오고 있다. 특히 컴퓨터 시뮬레이션 기술은 실제 물리현상을 정확히 모사하고 실시간으로 분석할 수 있는 수준으로 발전했다. 본 논문에서는 산업에서 주로 활용되는 유체해석(CFD: Computational Fluid Dynamics) 기술과 최신 가시화 기술로 떠오르고 있는 증강현실을 활용한 후처리기에 대해 기술한다. 유체해석 시뮬레이션 결과를 증강현실기술을 활용하여 가시화하는 연구가 활발히 진행되고 있으나, 결과 데이터의 사이즈가 큰 특성상 데스크탑 환경에서 기사화하는 연구에 한정되어 실제 공간에서 검토가 필요한 유체해석 시뮬레이션분야에서 활용이 제한된다. 본 논문에서는 이러한 문제점을 해결하기 위한 방법에 대해 논의한다. 이를 위해 후처리 과정에서는 유체해석결과를 분석한 후, 모바일 환경에서 원활한 구동을 지원하기 위한 데이터 경량화(70% 이상) 작업을 수행하며, 가시화 과정에서는 경량화된 데이터를 이용하여 클라우드 컴퓨팅을 활용한 실시간 추적 작업과 함께 유체해석결과를 화면에 정합하여 가시화 한다. 이를 통해 사용자는 시뮬레이션이 수행된 다양한 공간에서 유체해석결과를 효과적이고 몰입감있게 검토/분석 할 수 있다.

Keywords

SHGSCZ_2019_v20n4_523_f0001.png 이미지

Fig. 1. Proposed System

SHGSCZ_2019_v20n4_523_f0002.png 이미지

Fig. 2. Analysis of the CFD result

SHGSCZ_2019_v20n4_523_f0003.png 이미지

Fig. 3. Optimization of the CFD result

SHGSCZ_2019_v20n4_523_f0004.png 이미지

Fig. 4. Generation visualization data

SHGSCZ_2019_v20n4_523_f0005.png 이미지

Fig. 5. Example of the optimizing streamline

SHGSCZ_2019_v20n4_523_f0006.png 이미지

Fig. 6. Method of cloud based parallel method

SHGSCZ_2019_v20n4_523_f0007.png 이미지

Fig. 7. Example of optimization

SHGSCZ_2019_v20n4_523_f0008.png 이미지

Fig. 8. Demonstration of implementation

SHGSCZ_2019_v20n4_523_f0009.png 이미지

Fig. 9. Mobile based AR

SHGSCZ_2019_v20n4_523_f0010.png 이미지

Fig. 10. Wearable device based AR

Table 1. Related works

SHGSCZ_2019_v20n4_523_t0001.png 이미지

Table 2. Mobile Device based scenario

SHGSCZ_2019_v20n4_523_t0002.png 이미지

Table 3. Wearable device based Scenario

SHGSCZ_2019_v20n4_523_t0003.png 이미지

References

  1. P. Sinclair, "Integrating Hypermedia techniques in augmented reality environments", Ph.D thesis, University of Southampton, 2007.
  2. R. Azuma, "Overview of augmented reality", Proc. Of SIGGRAPH International Conference on Computer Graphics and Interactive Techniques, pp. 8-12, 2004.
  3. W. Li, A. Y. C. Nee, S. K. Ong, "A State-of-the-Art review of augmented reality in Engineering Analysis and Simulation", Multimodal Technologies Interact. Vol.1, No.3, pp.1-22, Sep. 2017. DOI: https://doi.org/10.3390/mti1030017
  4. T. Tawara, K. Ono, "A framework for volume segmentation and visualization using augmented reality", In Proceedings of the 2010 IEEE Symposium on 3D User Interface (3DUI), pp.121-122, March 2010. DOI: https://doi.org/10.1109/3dui.2010.5444707
  5. D. Weidlich, S. Scherer, M. Wabner, "Analyses using VR/AR visualization". IEEE Computer Graphics and Applications, Vol.28, No.5, pp.84-86, Aug. 2008. DOI: https://doi.org/10.1109/mcg.2008.89
  6. C. J. Paulus, N. Haouchine, D. Cazier, S.Cotin, "Augmented reality during cutting and tearing of deformable objects". In Proceedings of the 2015 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp.54-59, November 2015. DOI: https://doi.org/10.1109/ismar.2015.19
  7. A. Buchau, W. M. Rucker, U. Wossner, M. Becker, "Augmented reality in teaching of electrodynamics", In. J. Comput. Math. Electr. Electron, pp.948-963, July 2009.
  8. R. L. Silva, P. S. Rodrigues, J. C. Oliveira, G. Giraldi, "Augmented Reality for Scientific Visualization: Bringing Datasets inside the Real World", In Proceedings of the Summer Computer Simulation Conference (SCSC 2004), pp.20-24, January 2004.
  9. R. Lakaemper, A. M. Malkawi, "Integrating robot mapping and augmented building simulation", J. Comput. Civil. Eng. Vol.23, No.2 pp.384-390, Oct. 2009. DOI: https://doi.org/10.1061/(asce)0887-3801(2009)23:6(384)
  10. A. M. Malkawi, R. S. Srinivasan, "A new paradigm for Human-Building Interaction: the use of CFD and Augmented Reality", Automation in Construction, Vol.14, No.1 pp.71-81, Jan. 2005. DOI: https://doi.org/10.1016/j.autcon.2004.08.001
  11. T. Fukuda, K. Mori, J. Imaizumi, "Integration of CFD, VR, AR and BIM for design feedback in a design process-an experimental study". In Proceedings of the 33rd International Conference on Education and Research in Computer Aided Architectural Design Europe (eCAADe33), pp.22-26, September 2015.
  12. N. Yabuki, S. Furubayashi, Y. Hamada, T. Fukuda, "Collaborative visualization of environmental simulation result and sensing data using augmented reality", In Proceedings of the International Conference on Cooperative Design, Visualization and Engineering, pp.227-230, Sep. 2012. DOI: https://doi.org/10.1007/978-3-642-32609-7_32
  13. J. Moreland, J. Wang, Y. Liu, F. Li, L. Shen, B. Wu, C. Zhou, "Integration of Augmented Reality with Computational Fluid Dynamics for Power Plant Training", In Proceedings of the International Conference on Modeling, Simulation and Visualization Methods, pp.22-25, 2013.
  14. H. Regenbrecht, G. Baratoff, W. Wilke, "Augmented reality projects in the automotive and aerospace industries", IEEE Comput. Graph. Appl. pp.48-56, Nov. 2005. DOI: https://doi.org/10.1109/mcg.2005.124
  15. F. Niebling, R. Griesser, U. Woessner, "Using Augmented Reality and Interactive Simulations to Realize Hybrid Prototypes", International Symposium on Visual Computing, pp.2008-1017, March 2018. DOI: https://doi.org/10.1007/978-3-540-89639-5_96
  16. W. E. Lorensen, H. E. Cline, "Marching cubes: A high resolution 3D surface construction algorithm", In ACM siggraph computer graphics, Vol.21, No.4, pp.163-169, July. 1987. DOI: https://doi.org/10.1145/37402.37422
  17. L. P. Chew, "Constrained Delaunay Triangulations", Algorithmica, Vol.4, No.1-4, pp.97-108, June. 1987. DOI: https://doi.org/10.1007/bf01553881
  18. M. Garland, P. S. Heckbert, "Surface simplification using quadric error metrics", Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp.209-216, August 1997. DOI: https://doi.org/10.1145/258734.258849
  19. Unity Manual: Optimization, https://docs.unity3d. com/Manual/MobileOptimisation.html.
  20. E. Rosten, T. Drummond, "Machine learning for high-speed corner detection", Computer Vision - ECCV, pp.430-443, May 2006. DOI: https://doi.org/10.1007/11744023_34
  21. M. Sarkis, K. Diepold, "Camera-Pose Estimation via Projective Newton Optimization on the Manifold". IEEE Transactions on Image Processing. Vol.21, No.4, pp. 1729-1741, April 2012. DOI: https://doi.org/10.1109/tip.2011.2177845