DOI QR코드

DOI QR Code

Improved plastid transformation efficiency in Scoparia dulcis L.

  • Kota, Srinivas (Department of Biotechnology, Kakatiya University) ;
  • Hao, Qiang (Department of Biotechnology, Kakatiya University) ;
  • Narra, Muralikrishna (Department of Biotechnology, Kakatiya University) ;
  • Anumula, Vaishnavi (Department of Biotechnology, Kakatiya University) ;
  • Rao, A.V (Department of Biotechnology, Kakatiya University) ;
  • Hu, Zanmin (Department of Biotechnology, Kakatiya University) ;
  • Abbagani, Sadanandam (Department of Biotechnology, Kakatiya University)
  • 투고 : 2019.07.01
  • 심사 : 2019.09.26
  • 발행 : 2019.12.31

초록

The high expression level of industrial and metabolically important proteins in plants can be achieved by plastid transformation. The CaIA vector, a Capsicum-specific vector harboring aadA (spectinomycin resistance), is a selectable marker controlled by the PsbA promoter, and the terminator is flanked by the trnA and trnI regions of the inverted repeat (IR) region of the plastid. The CaIA vector can introduce foreign genes into the IR region of the plastid genome. The biolistic method was used for chloroplast transformation in Scoparia dulcis with leaf explants followed by antibiotic selection on regeneration medium. Transplastomes were successfully screened, and the transformation efficiency of 3 transgenic lines from 25 bombarded leaf explants was determined. Transplastomic lines were evaluated by PCR and Southern blotting for the confirmation of aadA insertion and its integration into the chloroplast genome. Seeds collected from transplastomes were analyzed on spectinomycin medium with wild types to determine genetic stability. The increased chloroplast transformation efficiency (3 transplastomic lines from 25 bombarded explants) would be useful for expressing therapeutically and industrially important genes in Scoparia dulcis L.

키워드

참고문헌

  1. Aileni M, Abbagani S, Zhang P (2011a) Highly efficient production of transgenic Scoparia dulcis L. mediated by Agrobacterium tumefaciens: plant regeneration via shoot organogenesis. Plant Biotechnol Rep 5:147-156 https://doi.org/10.1007/s11816-011-0166-3
  2. Aileni M, Kokkirala VR, Yarra R, Vemunoori AK, Kasula K, Umate P, Abbagani S (2011b) In Vitro Regeneration, Flowering and Seed Formation from Leaf Explants of Scoparia dulcis L Global Science Books 5
  3. Bock R, Maliga P (1995) In vivo testing of a tobacco plastid DNA segment for guide RNA function in psbL editing Molecular and General Genetics. MGG 247:439-443
  4. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534-1538 https://doi.org/10.1126/science.2897716
  5. Cheng L, Li H-P, Qu B, Huang T, Tu J-X, Fu T-D, Liao Y-C (2010) Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant cell reports 29:371-381 https://doi.org/10.1007/s00299-010-0828-6
  6. Chiu-Ming C, Ming-Tyan C (1976) 6-methoxybenzoxazolinone and triterpenoids from roots of Scoparia dulcis. Phytochemistry 15:1997-1999 https://doi.org/10.1016/S0031-9422(00)88874-3
  7. Chiyoda S, Linley PJ, Yamato KT, Fukuzawa H, Yokota A, Kohchi T (2007) Simple and efficient plastid transformation system for the liverwort Marchantia polymorpha L. suspension-culture cells. Transgenic research 16:41-49 https://doi.org/10.1007/s11248-006-9027-1
  8. De Farias Freire SM, Da Silva Emim JA, Lapa AJ, Souccar C, Torres LMB (1993) Analgesic and antiinflammatory properties of Scoparia dulcis L. extracts and glutinol in rodents. Phytotherapy Research 7:408-414 https://doi.org/10.1002/ptr.2650070605
  9. Doyle J (1991) DNA protocols for plants. In: Molecular techniques in taxonomy, vol 57. NATO ASI Series (Series H: Cell Biology). Springer, Berlin, Heidelberg, pp 283-293
  10. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo J-M, Tissot G (2004) Generation of fertile transplastomic soybean Plant molecular biology 55:479-489 https://doi.org/10.1007/s11103-004-0192-4
  11. Girish C, Vineela S, Reddy YN, Rajasekhar KK, Shankarananth V (2011) Antiulcer activity of aqueous extract of leaves of Scoparia dulcis (Linn.) in rats. Journal of Pharmacy Research Vol. 4:p2526
  12. Hayashi K, Hayashi T, Morita N (1992a) Cytotoxic and antitumour activity of scopadulcic acid B from Scoparia dulcis L. Phytotherapy research : PTR 6:6-9 https://doi.org/10.1002/ptr.2650060103
  13. Hayashi K, Niwayama S, Hayashi T, Nago R, Ochiai H, Morita N (1988) In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1. Antivir Res 9:345-354 https://doi.org/10.1016/0166-3542(88)90036-8
  14. Hayashi T (1999) Genetic Transformation of Scoparia dulcis L. In:Transgenic Medicinal Plants. Springer, pp 261-270
  15. Hayashi T, Kawasaki M, Okamura K, Tamada Y, Morita N, Tezuka Y, Kikuchi T, Miwa Y, Taga T (1992b) Scoparic acid A, a ${\beta}$-glucuronidase inhibitor from Scoparia dulcis. J Nat Prod 55:1748-1755 https://doi.org/10.1021/np50090a005
  16. Heifetz PB (2000) Genetic engineering of the chloroplast. Biochimie 82:655-666 https://doi.org/10.1016/S0300-9084(00)00608-8
  17. Hou B-K, Zhou Y-H, Wan L-H, Zhang Z-L, Shen G-F, Chen Z-H, Hu Z-M (2003) Chloroplast transformation in oilseed rape. Transgenic research 12:111-114 https://doi.org/10.1023/A:1022180315462
  18. K Muhlbauer S, Lossl A, Tzekova L, Zou Z (2002) Functional analysis of plastid DNA replication origins in tobacco by targeted inactivation. The Plant Journal 32:175-184 https://doi.org/10.1046/j.1365-313X.2002.01408.x
  19. Kanamoto H, Yamashita A, Asao H, Okumura S, Takase H, Hattori M, Yokota A, Tomizawa K-I (2006) Efficient and stable transformation of Lactuca sativa L. cv. Cisco (lettuce) plastids. Transgenic research 15:205-217 https://doi.org/10.1007/s11248-005-3997-2
  20. Kota S, Lakkam R, Kasula K, Narra M, Qiang H, Allini VR, Zanmin H, Abbagani S (2019) Construction of a species-specific vector for improved plastid transformation efficiency in Capsicum annuum L. 3 Biotech 9:226 https://doi.org/10.1007/s13205-019-1747-z
  21. Kumar S, Dhingra A, Daniell H (2004a) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203-216 doi:10.1007/s11103-004-2907-y
  22. Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant molecular biology 56:203-216 https://doi.org/10.1007/s11103-004-2907-y
  23. Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee S-B, Cheong J-J, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecules and cells 21:401
  24. Lelivelt CL, McCabe MS, Newell CA, Bastiaan deSnoo C, Van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant molecular biology 58:763-774 https://doi.org/10.1007/s11103-005-7704-8
  25. Lopez-Ochoa L, Apolinar-Hernandez M, Pena-Ramirez Y (2015) Characterization of chloroplast region rrn16-rrn23S from the tropical timber tree Cedrela odorata L. and de novo construction of a transplastomic expression vector suitable for Meliaceae trees and other. Genetics and Molecular Research 14:1469-1478 https://doi.org/10.4238/2015.February.20.2
  26. Lugo SK, Kunnimalaiyaan M, Singh NK, Nielsen BL (2004) Required sequence elements for chloroplast DNA replication activity in vitro and in electroporated chloroplasts. J Plant science 166:151-161 https://doi.org/10.1016/j.plantsci.2003.09.002
  27. Lutz KA, Knapp JE, Maliga P (2001) Expression of bar in the plastid genome confers herbicide resistance. J Plant Physiology 125:1585-1590 https://doi.org/10.1104/pp.125.4.1585
  28. Madanala R, Gupta V, Singh PK, Tuli R (2012) Development of chloroplast transformation vectors, and a new target region in the tobacco plastid genome. Plant Biotechnol Rep 6:77-87 doi:DOI 10.1007/s11816-011-0204-1
  29. Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289-313 doi:10.1146/annurev.arplant.55.031903.141633
  30. Miyahara T, Hayashi T, Matsuda S, Yamada R, Ikeda K, Tonoyama H, Komiyama H, Matsumoto M, Nemoto N, Sankawa U (1996) Inhibitory effects of scopadulcic acid B and its derivatives on bone resorption and osteoclast formation in vitro. Bioorg Med Chem Lett 6:1037-1042 https://doi.org/10.1016/0960-894X(96)00173-4
  31. Muralikrishna N, Srinivas K, Kumar KB, Sadanandam A (2016) Stable plastid transformation in Scoparia dulcis L. Physiology and Molecular Biology of Plants 22:575-581 https://doi.org/10.1007/s12298-016-0386-7
  32. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  33. Narra M, Kota S, Ellendula R, Kasula K, Kalva BK, Sadanandam A (2018a) Efficient chloroplast transformation in Scoparia dulcis L. using pFaadAII vector. J Indian Journal of Plant Physiology 23:593-598 https://doi.org/10.1007/s40502-018-0392-6
  34. Narra M, Kota S, Velivela Y, Ellendula R, Allini VR, Abbagani S (2018b) Construction of chloroplast transformation vector and its functional evaluation in Momordica charantia L. 3 Biotech 8:140 doi:10.1007/s13205-018-1160-z
  35. Pari L, Latha M (2006) Antihyperlipidemic effect of Scoparia dulcis (sweet broomweed) in streptozotocin diabetic rats. J Med Food 9:102-107 https://doi.org/10.1089/jmf.2006.9.102
  36. Ruf S, Hermann M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature biotechnology 19:870-875 https://doi.org/10.1038/nbt0901-870
  37. Ruhlman T, Verma D, Samson N, Daniell H (2010) The role of heterologous chloroplast sequence elements in transgene integration and expression. J Plant physiology 152:2088-2104 https://doi.org/10.1104/pp.109.152017
  38. Saikia R, Choudhury MD, Talukdar AD, Chetia P (2011) Antidiabetic Activity of Ethno Medicinal Plant Scoparia dulcis L. (Family:Scrophulariaceae): A Review Assam University. Journal of Science and Technology 7:173-180
  39. Sidorov V, Staub JM, Wan Y, Ye G (2019) Plastid Transformation of Maize. Google Patents
  40. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999a) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. The Plant Journal 19:209-216 https://doi.org/10.1046/j.1365-313X.1999.00508.x
  41. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999b) Stable chloroplast transformation in potato:use of green fluorescent protein as a plastid marker. Plant J 19:209-216 https://doi.org/10.1046/j.1365-313X.1999.00508.x
  42. Sikdar S, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Reports 18:20-24 https://doi.org/10.1007/s002990050525
  43. Singh A, Verma S, Bansal K (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Research 19:113-119 https://doi.org/10.1007/s11248-009-9290-z
  44. Srinivas K, Muralikrishna N, Kumar KB, Raghu E, Mahender A, Kiranmayee K, Yashodahara V, Sadanandam A (2016) Biolistic transformation of Scoparia dulcis L. Physiology and Molecular Biology of Plants 22:61-68 https://doi.org/10.1007/s12298-016-0338-2
  45. Staub JM, Maliga P (1992) Long regions of homologous DNA are incorporated into the tobacco plastid genome by transformation. The Plant Cell 4:39-45 https://doi.org/10.1105/tpc.4.1.39
  46. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proceedings of the National Academy of Sciences 87:8526-8530 https://doi.org/10.1073/pnas.87.21.8526
  47. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci U S A 90:913-917 https://doi.org/10.1073/pnas.90.3.913
  48. Verma D, Samson NP, Koya V, Daniell H (2008) A protocol for expression of foreign genes in chloroplasts. Nature Protocols 3:739 https://doi.org/10.1038/nprot.2007.522
  49. Wang H-H, Yin W-B, Hu Z-M (2009) Advances in chloroplast engineering. Journal of Genetics and Genomics 36:387-398 https://doi.org/10.1016/S1673-8527(08)60128-9
  50. Wang Y, Wei Z, Xing S (2018) Stable plastid transformation of rice, a monocot cereal crop. Biochemical and Biophysical Research Communications 503:2376-2379 https://doi.org/10.1016/j.bbrc.2018.06.164
  51. Yamazaki M, Son L, Hayashi T, Morita N, Asamizu T, Mourakoshi I, Saito K (1996) Transgenic fertile Scoparia dulcis L., a folk medicinal plant, conferred with a herbicide-resistant trait using an Ri binary vector. Plant Cell Rep 15:317-321 https://doi.org/10.1007/BF00232363