References
- Massaro C, Rotolo P, De Riccardis F, Milella E, Napoli A, Wieland M, et al. Comparative investigation of the surface properties of commercial titanium dental implants. Part I: chemical composition. J Mater Sci Mater Med 2002;13:535-48. https://doi.org/10.1023/A:1015170625506
- Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2--review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17:544-64.
- Esposito M, Coulthard P, Thomsen P, Worthington HV. The role of implant surface modifications, shape and material on the success of osseointegrated dental implants. A Cochrane systematic review. Eur J Prosthodont Restor Dent 2005;13:15-31.
- Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am 2006;50:323-38, v. https://doi.org/10.1016/j.cden.2006.03.001
- Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
- Morton D, Bornstein MM, Wittneben JG, Martin WC, Ruskin JD, Hart CN, et al. Early loading after 21 days of healing of nonsubmerged titanium implants with a chemically modified sandblasted and acid-etched surface: two-year results of a prospective two-center study. Clin Implant Dent Relat Res 2010;12:9-17. https://doi.org/10.1111/j.1708-8208.2009.00204.x
- Li D, Ferguson SJ, Beutler T, Cochran DL, Sittig C, Hirt HP, et al. Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants. J Biomed Mater Res 2002;60:325-32. https://doi.org/10.1002/jbm.10063
- Lang NP, Salvi GE, Huynh-Ba G, Ivanovski S, Donos N, Bosshardt DD. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans. Clin Oral Implants Res 2011;22:349-56. https://doi.org/10.1111/j.1600-0501.2011.02172.x
- Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, et al. A review on the wettability of dental implant surfaces II: biological and clinical aspects. Acta Biomater 2014;10:2907-18. https://doi.org/10.1016/j.actbio.2014.03.032
- Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, et al. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
- Scarano A, Piattelli A, Quaranta A, Lorusso F. Bone response to two dental implants with different sandblasted/acid-etched implant surfaces: a histological and histomorphometrical study in rabbits. BioMed Res Int 2017;2017:8724951.
- Soares PB, Moura CC, da Rocha Junior HA, Dechichi P, Zanetta-Barbosa D. Biological characterization of implant surfaces - in vitro study. Rev Odontol UNESP 2015;44:195-9. https://doi.org/10.1590/1807-2577.1087
- Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, et al. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995;29:389-401. https://doi.org/10.1002/jbm.820290314
- Eriksson C, Nygren H, Ohlson K. Implantation of hydrophilic and hydrophobic titanium discs in rat tibia: cellular reactions on the surfaces during the first 3 weeks in bone. Biomaterials 2004;25:4759-66. https://doi.org/10.1016/j.biomaterials.2003.12.006
- Hong J, Kurt S, Thor A. A hydrophilic dental implant surface exhibits thrombogenic properties in vitro. Clin Implant Dent Relat Res 2013;15:105-12. https://doi.org/10.1111/j.1708-8208.2011.00362.x
- Di Iorio D, Traini T, Degidi M, Caputi S, Neugebauer J, Piattelli A. Quantitative evaluation of the fibrin clot extension on different implant surfaces: an in vitro study. J Biomed Mater Res B Appl Biomater 2005;74:636-42.
- Kohn DH, Sarmadi M, Helman JI, Krebsbach PH. Effects of pH on human bone marrow stromal cells in vitro: implications for tissue engineering of bone. J Biomed Mater Res 2002;60:292-9. https://doi.org/10.1002/jbm.10050
- Arnett TR. Extracellular pH regulates bone cell function. J Nutr 2008;138:415S-8S. https://doi.org/10.1093/jn/138.2.415S
- Kaysinger KK, Ramp WK. Extracellular pH modulates the activity of cultured human osteoblasts. J Cell Biochem 1998;68:83-9. https://doi.org/10.1002/(SICI)1097-4644(19980101)68:1<83::AID-JCB8>3.0.CO;2-S
-
Marumo M, Suehiro A, Kakishita E, Groschner K, Wakabayashi I. Extracellular pH affects platelet aggregation associated with modulation of store-operated
$Ca^{2+}$ entry. Thromb Res 2001;104:353-60. https://doi.org/10.1016/S0049-3848(01)00374-7 - Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol 1980;70:419-39. https://doi.org/10.1016/S0076-6879(80)70067-8
- Jung K, Pergande M. Influence of inorganic phosphate on the activity determination of isoenzymes of alkaline phosphatase in various buffer systems. Clin Chim Acta 1980;102:215-9. https://doi.org/10.1016/0009-8981(80)90035-2
- Harada M, Hiraoka BY, Fukasawa K, Fukasawa KM. Purification and properties of bovine dental-pulp alkaline-phosphatase. Arch Oral Biol 1982;27:69-74. https://doi.org/10.1016/0003-9969(82)90179-0
- Jones JV, Mansour M, James H, Sadi D, Carr RI. A substrate amplification system for enzyme-linked immunoassays. II. Demonstration of its applicability for measuring anti-DNA antibodies. J Immunol Methods 1989;118:79-84. https://doi.org/10.1016/0022-1759(89)90056-2
- Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblasts compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater 2008;24:102-10. https://doi.org/10.1016/j.dental.2007.03.001
- Valarmathi MT, Yost MJ, Goodwin RL, Potts JD. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Biomaterials 2008;29:2203-16. https://doi.org/10.1016/j.biomaterials.2008.01.025
- Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-8. https://doi.org/10.1083/jcb.96.1.191
- Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 2004;329:77-84. https://doi.org/10.1016/j.ab.2004.02.002
- Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 2006;290:C1139-46. https://doi.org/10.1152/ajpcell.00415.2005
- Kanthan SR, Kavitha G, Addi S, Choon DS, Kamarul T. Platelet-rich plasma (PRP) enhances bone healing in non-united critical-sized defects: a preliminary study involving rabbit models. Injury 2011;42:782-9. https://doi.org/10.1016/j.injury.2011.01.015
- Tamada Y, Kulik EA, Ikada Y. Simple method for platelet counting. Biomaterials 1995;16:259-61. https://doi.org/10.1016/0142-9612(95)92126-Q
- Grunkemeier JM, Tsai WB, Horbett TA. Hemocompatibility of treated polystyrene substrates: contact activation, platelet adhesion, and procoagulant activity of adherent platelets. J Biomed Mater Res 1998;41:657-70. https://doi.org/10.1002/(SICI)1097-4636(19980915)41:4<657::AID-JBM18>3.0.CO;2-B
- Park JY, Davies JE. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res 2000;11:530-9. https://doi.org/10.1034/j.1600-0501.2000.011006530.x
- Klein MO, Grotz KA, Walter C, Wegener J, Wagner W, Al-Nawas B. Functional rehabilitation of mandibular continuity defects using autologous bone and dental implants - prognostic value of bone origin, radiation therapy and implant dimensions. Eur Surg Res 2009;43:269-75. https://doi.org/10.1159/000229027
- Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp 2014:51046.
Cited by
- Coating of a Sand-Blasted and Acid-Etched Implant Surface with a pH-Buffering Agent after Vacuum-UV Photofunctionalization vol.10, pp.11, 2020, https://doi.org/10.3390/coatings10111040
- Secondary stability achieved in dental implants with a calcium‐coated sandblasted, large‐grit, acid‐etched (SLA) surface and a chemically modified SLA surface placed without mechanic vol.32, pp.12, 2019, https://doi.org/10.1111/clr.13848