참고문헌
- Environmental Protection Agency (EPA), Nitrogen oxides (NOx), why and how they are controlled, Epa-456/F-99-006R. (1999) 48.
- J. Lasek, Y.-H. Yu, J.C.S. Wu, Removal of NOx by photocatalytic processes, J. Photochem. Photobiol. C Photochem. Rev. 14 (2013) 29-52. https://doi.org/10.1016/j.jphotochemrev.2012.08.002
- J.J. Kaczur, Oxidation chemistry of chloric acid in NOx/ SOx and air toxic metal removal from gas streams, Environ. Prog. 15 (1996) 245-254. https://doi.org/10.1002/ep.670150414
- U.S. Environmental Protection Agency, Nitrogen Oxides Emissions, (2014) 23.
- M.S. Solanki, S. Benjamin, Photocatalysis, Adv. Oxid. Process. Waste Water Treat. (2018) 135-175.
- D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Photocatalysis. A multi-faceted concept for green chemistry, Chem. Soc. Rev. 38 (2009) 1999-2011. https://doi.org/10.1039/b714786b
- T. Luttrell, S. Halpegamage, J. Tao, A. Kramer, E. Sutter, M. Batzill, Why is anatase a better photocatalyst than rutile? - Model studies on epitaxial TiO2 films, Sci. Rep. 4 (2015) 4043. https://doi.org/10.1038/srep04043
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol. C Photochem. Rev. 1 (2000) 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
- L.M. S. George, S. Pokhrel, Z. Ji, B. L. Henderson, T. Xia, L. J. Li, J. I. Zink, A. E. Nel, Role of Fe doping in tuning the band gap energy of titanium dioxide for studying the light activated cytotoxicity, J. Am. Chem. Soc. 133 (2011) 11270-11278. https://doi.org/10.1021/ja202836s
- R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D.C. Kothari, A. Miotello, Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity, Appl. Catal. B Environ. 168-169 (2015) 333-341. https://doi.org/10.1016/j.apcatb.2014.12.053
- M.B. Suwarnkar, R.S. Dhabbe, A.N. Kadam, K.M. Garadkar, Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method, Ceram. Int. 40 (2014) 5489-5496. https://doi.org/10.1016/j.ceramint.2013.10.137
- Y.-H. Peng, G.-F. Huang, W.-Q. Huang, Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films, Adv. Powder Technol. 23 (2012) 8-12. https://doi.org/10.1016/j.apt.2010.11.006
- Q.R. Deng, X.H. Xia, M.L. Guo, Y. Gao, G. Shao, Mn-doped TiO2 nanopowders with remarkable visible light photocatalytic activity, Mater. Lett. 65 (2011) 2051-2054. https://doi.org/10.1016/j.matlet.2011.04.010
- I. Ganesh, P.P. Kumar, I. Annapoorna, J.M. Sumliner, M. Ramakrishna, N.Y. Hebalkar, G. Padmanabham, G. Sundararajan, Preparation and characterization of Cu-doped TiO2 materials for electrochemical, photoelectrochemical, and photocatalytic applications, Appl. Surf. Sci. 293 (2014) 229-247. https://doi.org/10.1016/j.apsusc.2013.12.140
- R. Ribeiro, S. de Lazaro, C. de Oliveira, Band-Gap Engineering for Photocatalytic Applications: Anionic and Cationic Doping of TiO2 Anatase, Curr. Phys. Chem. 6 (2016) 22-27. https://doi.org/10.2174/187794680601160324113805
- Y. Zhang, Q. Li, Synthesis and characterization of Fe-doped TiO2 films by electrophoretic method and its photocatalytic activity toward methyl orange, Solid State Sci. 16 (2013) 16-20. https://doi.org/10.1016/j.solidstatesciences.2012.11.012
- N.H. Hao, G. Gyawali, S.W. Lee, Ceramic Processing Research Rapid synthesis of TiO2 nanotubes via microwave-assisted hydrothermal method, J. Ceram Process Res. 18 (2017) 36-40.
- S. Narakaew, The nano-TiO2 synthesis using ultrasonic assisted sol-gel method and its photocatalytic degradation of methylene blue, J. Ceram Process Res. 17 (2016) 409-413.
- A. Monshi, M.R. Foroughi, M.R. Monshi, Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD, World J. Nano Sci. Eng. 02 (2012) 154-160. https://doi.org/10.4236/wjnse.2012.23020
- M. Hinojosa-Reyes, V. Rodriguez-Gonzalez, R. Zanella, Gold nanoparticles supported on TiO2-Ni as catalysts for hydrogen purification via water-gas shift reaction, RSC Adv. 4 (2014) 4308-4316. https://doi.org/10.1039/C3RA45764H
- Y. Yang, Y. Yu, J. Wang, W. Zheng, Y. Cao, Doping and transformation mechanisms of Fe3+ ions in Fe-doped TiO2, CrystEngComm. 19 (2017) 1100-1105. https://doi.org/10.1039/C6CE02523D
- B.I. Kidyarov, N.D. Dandaron, Kinetics of non-stationary nucleation in solutions, J. Cryst. Growth. 52 (1981) 812-815. https://doi.org/10.1016/0022-0248(81)90380-8
- A. Chianese, F. Di Berardino, A.G. Jones, On the effect of secondary nucleation on the crystal size distribution from a seeded batch crystallizer, Chem. Eng. Sci. 48 (1993) 551-560. https://doi.org/10.1016/0009-2509(93)80309-E
- M. Thommes, Physical adsorption characterization of nanoporous materials, Chemie-Ingenieur-Technik. 82 (2010) 1059-1073. https://doi.org/10.1002/cite.201000064
- B. Viswanathan, K.J.A. Raj, Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile, Indian J. Chem. - Sect. A Inorganic, Phys. Theor. Anal. Chem. 48 (2009) 1378-1382.
- Y. Duan, N. Fu, Q. Liu, Y. Fang, X. Zhou, J. Zhang, Y. Lin, Sn-doped TiO2 photoanode for dye-sensitized solar cells, J. Phys. Chem. C. 116 (2012) 8888-8893. https://doi.org/10.1021/jp212517k
- X. Jiang, Y. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C. Pan, Characterization of Oxygen Vacancies Associates within the Hydrogenated TiO2 : a Positron Annihilation Study Characterization of Oxygen Vacancies Associates within the Hydrogenated TiO2 : a Positron Annihilation Study, J.Phys.Chem.C. 116 (2012) 22619-22624. https://doi.org/10.1021/jp307573c
- P. Li, E.Y. Jiang, H.L. Bai, Fabrication of ultrathin epitaxial γ-Fe2O3 films by reactive sputtering, J. Phys. D. Appl. Phys. 44 (2011) 075003. https://doi.org/10.1088/0022-3727/44/7/075003
- T. Ohsaka, F. Izumi, Y. Fujiki, Raman spectrum of anatase, TiO2, J. Raman Spectrosc. 7 (1978) 321-324. https://doi.org/10.1002/jrs.1250070606
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U. V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor, Nat. Nanotechnol. 3 (2008) 210-215. https://doi.org/10.1038/nnano.2008.67
- N. Serpone, C. Organica, V. Uni, V. Taramelli, V. Pa, Is the Band Gap of Pristine TiO2 Narrowed by Anion- and Cation-Doping of Titanium Dioxide in Second-Generation Photocatalysts?, J. Phys. Chem. B. 110 (2006) 24287-24293. https://doi.org/10.1021/jp065659r
- C.H. Wu, Effects of operational parameters on the decolorization of C.I. Reactive Red 198 in UV/TiO2-based systems, Dye. Pigment. 77 (2008) 31-38. https://doi.org/10.1016/j.dyepig.2007.03.003
- A.G. Thomas, W.R. Flavell, A.R. Kumarasinghe, A.K. Mallick, D. Tsoutsou, G.C. Smith, R. Stockbauer, S. Patel, M. Gratzel, R. Hengerer, Resonant photoemission of anatase TiO2 (101) and (001) single crystals, Phys. Rev. B. 67 (2003) 035110. https://doi.org/10.1103/PhysRevB.67.035110
- J.. Dalton, P.. Janes, N.. Jones, J.. Nicholson, K.. Hallam, G.. Allen, Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach, Environ. Pollut. 120 (2002) 415-422. https://doi.org/10.1016/S0269-7491(02)00107-0
- J. Ma, H. Wu, Y. Liu, H. He, Photocatalytic Removal of NOx over Visible Light Responsive Oxygen-Deficient TiO2, J. Phys. Chem. C. 118 (2014) 7434-7441. https://doi.org/10.1021/jp500116n
- H. Wang, Z. Wu, W. Zhao, B. Guan, Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric, Chemosphere. 66 (2007) 185-190. https://doi.org/10.1016/j.chemosphere.2006.04.071