DOI QR코드

DOI QR Code

The Characteristics of Black Carbon of Seoul

서울의 블랙카본 특성 연구

  • Park, Jongsung (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Song, Inho (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Kim, Hyunwoong (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Lim, Hyungbae (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Park, Seungmyung (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Shin, Suna (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Shin, Hyejoung (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Lee, Sangbo (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Kim, Jeongho (Research Center, APM Engineering Co. Ltd.)
  • 박종성 (국립환경과학원 대기환경연구과) ;
  • 송인호 (국립환경과학원 대기환경연구과) ;
  • 김현웅 (국립환경과학원 대기환경연구과) ;
  • 임형배 (국립환경과학원 대기환경연구과) ;
  • 박승명 (국립환경과학원 대기환경연구과) ;
  • 신선아 (국립환경과학원 대기환경연구과) ;
  • 신혜정 (국립환경과학원 대기환경연구과) ;
  • 이상보 (국립환경과학원 대기환경연구과) ;
  • 김정호 ((주)에이피엠엔지니어링)
  • Received : 2018.11.26
  • Accepted : 2019.02.06
  • Published : 2019.04.30

Abstract

The concentration and coating thickness of black carbon (BC) were measured along with fine dust in the fall of 2018, at the Seoul Metropolitan Area Intensive Monitoring Station (SIMS). In fall, the concentration of $PM_{10}$ and $PM_{2.5}$ was $23{\pm}12.6{\mu}g/m^3$ and $12{\pm}5.8{\mu}g/m^3$, respectively, lower than that in other seasons. The BC level, measured using an Aethalometer, was $0.73{\pm}0.43{\mu}g/m^3$, while the levels of elemental carbon (EC) and refractory-BC (rBC), measured by semi-continuous carbon analyzer (SOCEC) and single particle soot photometer (SP2), were $0.34{\pm}0.18{\mu}g/m^3$ and $0.32{\pm}0.18{\mu}g/m^3$, respectively. As such, the concentration level differed according to the measurement method, but its time-series distribution and diurnal variation showed the same trends. The BC concentration at SIMS was primarily affected by automobiles with higher levels of BC during morning and evening commuting times due to increased traffic congestion. rBC, measured by SP2, had a peak concentration and coating thickness of 84 nm and 43 nm, respectively. Notably, the coating thickness had an inverse relationship with particle size.

2018년 가을철(9월 5일~10일, 6일간) 수도권대기오염집중측정소에서 미세먼지와 함께 블랙카본(BC, black carbon)의 농도 및 코팅두께를 파악하였다. 가을철 $PM_{10}$$23{\pm}12.6{\mu}g/m^3$, $PM_{2.5}$$12{\pm}5.8{\mu}g/m^3$으로 다른 계절보다 낮은 수준이었다. Aethalometer로 측정한 BC는 $0.73{\pm}0.43{\mu}g/m^3$, SOCEC로 측정한 EC(elemental carbon)는 $0.34{\pm}0.18{\mu}g/m^3$, SP2로 측정한 rBC(refractory-BC)는 $0.32{\pm}0.18{\mu}g/m^3$으로 측정방법에 따른 농도차이를 보여주었으나, 시계열 분포와 일 변동은 동일한 경향을 나타내었다. 수도권대기오염집중측정소에서 측정된 블랙카본은 자동차와 같은 일차오염원의 영향을 강하게 받았고, 주간과 야간의 출퇴근으로 인한 교통 혼잡 시간대에 높은 특징을 보였다. SP2로 측정한 $PM_{1.0}$ 단일입자에 대한 블랙카본의 개수농도는 84 nm에서 최고치로 관측되었으며, 코팅두께는 43 nm로 산정되었다. 특히 블랙카본 입자의 직경이 작을수록 코팅두께는 증가하였고, 입자의 직경이 증가할수록 코팅두께는 작아지는 특성을 나타내었다.

Keywords

HOPHBL_2019_v28n2_113_f0001.png 이미지

Figure 1. Image of SIMS location map (Google Earth Pro, Ver 7.3.2.5491, Aug. 2018).

HOPHBL_2019_v28n2_113_f0002.png 이미지

Figure 2. Plot of the Wind rose of study period at SIMS.

HOPHBL_2019_v28n2_113_f0003.png 이미지

Figure 3. Time variation of PM concentrations (left) and scatter plot (right) at SIMS.

HOPHBL_2019_v28n2_113_f0004.png 이미지

Figure 4. Pollution rose of PM10 (left) and PM2.5 (right) at SIMS.

HOPHBL_2019_v28n2_113_f0005.png 이미지

Figure 5. Time variation of carbon compounds (EC, BC and rBC) and its scattered plots at SIMS.

HOPHBL_2019_v28n2_113_f0006.png 이미지

Figure 6. Pollution rose of EC (left), BC (middle) and rBC (right) at SIMS.

HOPHBL_2019_v28n2_113_f0007.png 이미지

Figure 7. Diurnal variation of PM (PM10, PM2.5) (left) and carbon compounds (EC, BC, rBC) (right)

HOPHBL_2019_v28n2_113_f0008.png 이미지

Figure 8. The rBC size distribution spectrum and number concentrations by SP2 at SIMS.

HOPHBL_2019_v28n2_113_f0009.png 이미지

Figure 9. The rBC averaged size distribution (left) and coating thickness (right) at SIMS.

Table 1. Daily weather conditions during the study period at SIMS.

HOPHBL_2019_v28n2_113_t0001.png 이미지

Table 2. Instrumentation of the BC and PM2.5 Measurement at SIMS.

HOPHBL_2019_v28n2_113_t0002.png 이미지

Table 3. Summary on concentrations of PM10 and PM2.5.

HOPHBL_2019_v28n2_113_t0003.png 이미지

Table 4. Summary on the carbon compounds as EC, BC and rBC

HOPHBL_2019_v28n2_113_t0004.png 이미지

Table 5. Summary on the PM2.5, EC, BC and rBC in case of the rush-hour and non rush-hour

HOPHBL_2019_v28n2_113_t0005.png 이미지

References

  1. Baungardner D, Kok G, Raga G. 2004. Warming of the Arctic lower stratosphere by light absorbing particles, Geophys. Res. Lett. 31(6).
  2. Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z. 2004. A technologybased global inventory of black and organic carbon emissions from combustion, J. Geophys. Res. 109, D14203. https://doi.org/10.1029/2003JD003697
  3. Bond TC, Bergstrom RW. 2006. Light Absorption by Carbonaceous Particles: An Investigative Review, Aerosol science and technology. 40(1): 27-67. https://doi.org/10.1080/02786820500421521
  4. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, Deangelo BJ, Flanner MG, Ghan S, Karcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS. 2013. Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos. 118, 5380-5552. https://doi.org/10.1002/jgrd.50171
  5. Chow JC, Watson JG, Chen LWA, Arnott WP, Moosmuller H, Fung K. 2004. Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols, Environ. Sci. Technol. 38(16): 4414-4422. https://doi.org/10.1021/es034936u
  6. Eckbreth AC. 1977. Effects of laser-modulated particulate incandescence on Raman scattering diagnostics, Journal of Applied Physics 48(11): 4473. https://doi.org/10.1063/1.323458
  7. Fung K. 1990. Particulate Carbon Speciation by MnO2 Oxidation, Aerosol science and technology. 12(1): 122-127. https://doi.org/10.1080/02786829008959332
  8. Gysel M, Laborde M, Olfert JS, Subramanian R, Grohn AJ. 2011. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration, Atmos. Meas. Tech. 4, 2851-2858. https://doi.org/10.5194/amt-4-2851-2011
  9. Han JH, Bahng BJ, Lee MH, Yoon SC, Kim SW, Chang LS, Kang KS. 2015. Semi-continuous Measurement of $PM_{2.5}$ OC and EC at Gosan: Seasonal Variations and Characteristics of High-concentration Episodes, Korea, J. Korean Soc. Atmos. Environ. 29(3): 237-250. [Korean Literature] https://doi.org/10.5572/KOSAE.2013.29.3.237
  10. Hansen ADA, Rosen HJ, Novakov T. 1983. The aethalometer -An instrument for the realtime measurement of optical absorption by aerosol particles, Science of The Total Environment, 36(JUN): 191-196. https://doi.org/10.1016/0048-9697(84)90265-1
  11. Hitzenberger R, Petzold A, Bauer H, Ctyroky P, Pouresmaeil P, Laskus L, Puxbaum H. 2006. Intercomparison of Thermal and Optical Measurement Methods for Elemental Carbon and Black Carbon at an Urban Location, Environ. Sci. Technol. 40(20): 6377-6383. https://doi.org/10.1021/es051228v
  12. Knox A, Evans GJ, Brook JR, Yao X, Jeong CH, Godri KJ, Sabaliauskas K, Slowik JG. 2009. Mass Absorption Cross-Section of Ambient Black Carbon Aerosol in Relation to Chemical Age, Aerosol Science and Technolgy, 43(6): 522-532. https://doi.org/10.1080/02786820902777207
  13. Kondo Y, Sahu L, Kuwata M, Miyazaki Y, Takegawa N, Moteki N, Imaru J, Han S, Nakayama T, Kim Oanh NT, Hu M, Kim YJ, Kita K. 2009. Stabilization of the mass absorption cross section of black carbon for filter-based absorption photometry by the use of a heated inlet, Aerosol Sci. Technol. 43(8): 741-756. https://doi.org/10.1080/02786820902889879
  14. Laborde M, Mertes P, Zieger P, Dommen J, Baltensperger U, Gysel M. 2012. Sensitivity of the Single Particle Soot Photometer to different black carbon types, Atmos. Meas. Tech. 5. 1031-1043. https://doi.org/10.5194/amt-5-1031-2012
  15. Lee SB, Bae GN, Park SM, Jung SG. 2007. black carbon pollution level at a roadside of seoul in spring, Korea, J. Korean Soc. Atmos. Environ. 23(4): 466-477. [Korean Literature] https://doi.org/10.5572/KOSAE.2007.23.4.466
  16. Lim KT, Kim SJ, Kang MG. 2010. A Study on the Effects of Carbon Black to Reactive Oxygen Species and Inflammation Reaction, Occupational Safety and Health Research Institute, KOSHA. [Korean Literature]
  17. Melton LA. 1984. Soot diagnostics based on laser heating, The Optical Society, 23(13): 2201-2208.
  18. Moteki N, Kondo Y, Miyazaki Y, Takegawa N, Komazaki Y, Kurata G, Shirai T, Blake DR, Miyakawa T, Koike M. 2007. Evolution of mixing state of black carbon particles: aircraft measurements over the western Pacific in March 2004, Geophys. Res. Lett. 34, L11803. https://doi.org/10.1029/2006GL028943
  19. National Institute of Environmental Research. 2016. The study on the source contribution of pollutants and the characteristics of regional air parcel movement in the Korean Peninsula. [Korean Literature]
  20. National Institute of Environmental Research. 2017. Supersite operation report in 2016. [Korean Literature]
  21. Oh J, Park JS, Ahn JY, Choi JS, Lim JH, Kim HJ, Han JS, Hong YD, Lee GW. 2014. Study on the Behavior of the Black Carbon at Baengnyeong Island of Korea Peninsular, Korea, J. Korean Society of Urban Environment. 14(2): 67-76. [Korean Literature]
  22. Oh J, Park JS, Lee SU, Ahn JY, Choi JS, Lee SD, Lee YH, Kim HJ, Hong YD, Kim JH, Hong JH, Kim JH, Kim SW, Lee GW. 2015. Characteristics of Black Carbon Particles in Ambient Air Using a Single Particle Soot Photometer(SP2) in May 2013, Jeju, Korea, J. Korean Soc. Atmos. Environ. 31(3): 255-268. [Korean Literature] https://doi.org/10.5572/KOSAE.2015.31.3.255
  23. Park JS, Song IH, Park SM, Shin HJ, Hong YD. 2015a. The Characteristics and Seasonal Variations of OC and EC for $PM_{2.5}$ in Seoul Metropolitan Area in 2014, Korea, J. Environ. Impact Assess, 24(6): 578-592. [Korean Literature] https://doi.org/10.14249/eia.2015.24.6.578
  24. Park JS, Song IH, Park SM, Shin HJ, Hong YD. 2015b. Study on the Characterization of High Concentration Event in Seoul Metropolitan Area in Spring of 2014 using Aerosol Mass Spectrometers, Korea, J. Korean Soc. Environ. Analysis. 18(1): 12-25. [Korean Literature]
  25. Park SM, Park JS, Song IH, Shin HJ, Hong YD, Kim JH. 2015. Characteristics of Oxygenated-VOCs and Oxidation of Organic Component in PM1.0 at an Urban Site of Seoul during June, 2014, Korea, J. Korean Society of Urban Environment. 15(3): 207-218. [Korean Literature]
  26. Park SS, Yu GH, Lee SI, Bae MS. 2018. Aethalometer-based Estimate of Mass Absorption Cross Section of Black Carbon Particles at an Urban Site of Gwangju, J. Korean Soc. Atmos. Environ. 34(5): 727-734. [Korean Literature] https://doi.org/10.5572/KOSAE.2018.34.5.727
  27. Schwarz JP, Gao RS, Fahey DW, Thomson DS, Watts LA, Wilson JC, Reeves JM, Darbeheshti M, Baumgardner DG, Kok GL, Chung SH, Schulz M, Hendricks J, Lauer A, Karcher B, Slowik JG, Rosenlof KH, Thompson TL, Langford AO, Loewenstein M, Aikin KC. 2006. Singleparticlez measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res. 111, D16.
  28. Schwarz JP, Spackman JR, Fahey DW, Gao RS, Lohmann U, Stier P, Watts LA, Thomson DS, Lack DA, Pfister L, Mahoney MJ, Baumgardner D, Wilson JC, Reeves JM. 2008. Coatings and their enhancement of black carbon light absorption in the tropical atmosphere, J. Geophys. Res. Atmos. 113. D03203.
  29. Shiraiwa M, Kondo Y, Iwamoto T, Kita K. 2010. Amplification of Light Absorption of Black Carbon by Organic Coating, Aerosol Science and Technology, 44(1): 46-54. https://doi.org/10.1080/02786820903357686
  30. Stephens M, Turner N, Jon SB. 2003. Particle identification by laser-induced incandescence in a soildstate laser cavity, Appl. Opt. 42(19): 3726-3736. https://doi.org/10.1364/AO.42.003726
  31. U.S. Department of Energ. 2017. Single-Particle Soot Photometer (SP2) Instrument Handbook, DOE/SC-ARM-TR-169.

Cited by

  1. Spatial Concentration of Carbon Components in Indoor PM2.5 of School Classrooms in a Large City of Korea vol.11, pp.16, 2019, https://doi.org/10.3390/app11167328