DOI QR코드

DOI QR Code

레이저 스크라이빙에 의한 결정질 실리콘 태양전지의 분할 및 특성 분석

Separation and Characterization of Crystalline Silicon Solar Cell by Laser Scribing

  • 박지수 (성균관대학교 전자전기컴퓨터공학과) ;
  • 오원제 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이수호 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이재형 (성균관대학교 전자전기컴퓨터공학과)
  • Park, Ji Su (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Oh, Won Je (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Soo Ho (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Lee, Jae Hyeong (Department of Electrical and Computer Engineering, Sungkyunkwan University)
  • 투고 : 2019.01.04
  • 심사 : 2019.02.11
  • 발행 : 2019.05.01

초록

Advances in laser technology have enabled ultra-high-speed ultra-precise processing, thus expanding potential applications to the semiconductor, medical, and photovoltaic industries. In particular, laser scribing technology has been applied to the production of shingled solar modules. In this work, we analyze the effect of laser scribing conditions, e.g., scribing depth, on the characteristics of the resulting divided solar cells. When the scribing depth was greater than $100{\mu}m$, the solar cells were well separated. In addition, the desired scribing depths were reached in fewer scans when the laser spot overlap was 100%. The efficiency of the divided cells decreased due to the high series resistance at scribing depths of less than $100{\mu}m$. However, at scribing depths of approximately $100{\mu}m$, the series resistance was low and efficiency reduction was minimized.

키워드

JJJRCC_2019_v32n3_187_f0001.png 이미지

Fig. 1. Photographs of mono crystalline silicon solar cell.

JJJRCC_2019_v32n3_187_f0002.png 이미지

Fig. 2. Laser-scribinged lines on (a) the front and (b) rear side of the solar cells.

JJJRCC_2019_v32n3_187_f0003.png 이미지

Fig. 3. Relationship between the scribing depth and the scanning count under different laser beam spot overlap ratios.

JJJRCC_2019_v32n3_187_f0004.png 이미지

Fig. 4. Photographs of cell divided with the scribing depth of (a) 106 ㎛ and (b) 85 ㎛.

JJJRCC_2019_v32n3_187_f0005.png 이미지

Fig. 5. Top views of the solar cell laser-scribed with various scanning counts (scribing depths): (a) 10 times (64 ㎛), (b) 16 times (68 ㎛), and (c) 23 times (77 ㎛).

JJJRCC_2019_v32n3_187_f0006.png 이미지

Fig. 6. Cross-section views of the divided cell with various laser scanning counts: (a) 10 times, (b) 12 times, (c) 16 times, and (d) 23 times.

JJJRCC_2019_v32n3_187_f0007.png 이미지

Fig. 7. Comparison of solar cell performance between cell performances of the 6 inch cell and divided cell.

Table 1. Laser scribing conditions.

JJJRCC_2019_v32n3_187_t0001.png 이미지

참고문헌

  1. The Innovation Polis, Laser Processing Market (INNOPOLIS, Daejeon, Korea, 2017) p. 2.
  2. M. Lee, J. Weld. Joining, 33, 7 (2015). [DOI: https://doi.org/10.5781/JWJ.2015.33.4.7]
  3. Ministry of SMEs and Startups, Technology Roadmap for SME (MSS, Daejeon, Korea, 2017) p. 1.
  4. R. Steiner, Med. Laser Application, 21, 131 (2006). [DOI: https:// doi.org/10.1016/j.mla.2006.03.007]
  5. K. W. Cho and H. J. Park, J. Korean Soc. Precis. Eng., 27, 32 (2010).
  6. H. Jee, W. Choi, J. Lee, and C. Jeong, Curr. Photovoltaic Res., 5, 95 (2017). [DOI: https://doi.org/10.21218/CPR.2017.5.3.095]
  7. G. Beaucarne, Energy Procedia, 98, 115 (2016). [DOI: https://doi.org/10.1016/j.egypro.2016.10.087]
  8. D. Rudolph, J. Rabanal-Arabach, I. Ullmann, A. Halm, A. Schneider, and T. Fischer, Proc. 33rd European Photovoltaic Solar Energy Conference and Exhibition (EUPVSEC, Amsterdam, Nederland, 2017) p. 880.
  9. D. Tonini, G. Cellere, M. Bertazzo, A. Fecchio, L. Cerasti, and M. Galiazzo, Energy Procedia, 150, 36 (2018). [DOI: https://doi.org/10.1016/j.egypro.2018.09.010]
  10. M. Mittan, T. Zech, M. Wiee, D. Blasi, M. Ebert, and H. Wirth, Proc. 44th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Washington, USA, 2017) p. 1.
  11. L. Theunissen, B. Willems, J. Burke, D. Tonini, M. Galiazzo, and A. Henckens, AIP Conf. Proc., 1999, 080003 (2018). [DOI: https://doi.org/10.1063/1.5049305]
  12. S. Eiternick, F. Kaule, H. U. Zuhlke, T. Kiessling, M. Grimm, S. Schoenfelder, and M. Turek, Energy Procedia, 77, 340 (2015). [DOI: https://doi.org/10.1016/j.egypro.2015.07.048]
  13. S. Eiternick, K. Kaufmann, J. Schneider, and M. Turek, Energy Procedia, 55, 326 (2014). [DOI: https://doi.org/10.1016/j.egypro.2014.08.094]
  14. M. Oswald, M. Turek, J. Schneider, and S. Schoenfelder, Proc. 28th European Photovoltaic and Solar Energy Conference and Exhibition (EUPVSEC, Villepinte, France, 2013) p. 1807.
  15. J. S. Lee, G. H. Kang, Y. G. Park, J. J. Park, Y. J. Lee, Y. S. Jeon, and B. D. Choe, Solar Cell Measurement and Analysis (Green, Seoul, 2016) p. 31.