DOI QR코드

DOI QR Code

Selective Adsorption of Si(IV) onto Hydrotalcite from Alkali Leaching Solution of Black Dross

블랙드로스 알칼리 침출용액으로부터 hydrotalcite에 의한 규소(IV)의 선택적 흡착

  • Song, Si Jeong (Department of Advanced Materials Science & Engineering, Mokpo National University) ;
  • Lee, Man Seung (Department of Advanced Materials Science & Engineering, Mokpo National University)
  • Received : 2019.03.20
  • Accepted : 2019.04.19
  • Published : 2019.04.30

Abstract

In order to recover pure alumina from black dross, leaching of mechanically activated black dross with NaOH solution resulted in an aluminate solution containing a small amount of Si(IV). Selective adsorption of Si(IV) onto hydrotalcite was investigated from 5 M NaOH solution where the concentration of Al(III) and Si(IV) was 13000 and 150 mg/L, respectively. Only Si(IV) was selectively loaded onto hydrotalcite, while Al(III) remained in the solution. Effect of the calcination treatment of hydrotalcite and concentration of calcined hydrotalcite and NaOH on the loading of Si(IV) was investigated. Although the loading percentage of Si(IV) was low from 5 M NaOH solution, most of the Si(IV) was removed by adjusting the concentration of NaOH by 48 times dilution with water when the concentration of calcined hydrotalcite was higher than 4.5 g/L. The loading of Si(IV) onto calcined hydrotalcite followed Freundlich adsorption isotherm.

블랙드로스로부터 고순도 알루미나를 회수하기 위해 기계적 활성화 처리한 블랙드로스를 수산화나트륨용액으로 침출하면 미량의 규소(IV)가 함유된 알루미네이트 용액을 얻을 수 있다. 본 연구에서는 hydrotalcite를 사용하여 알루미늄(III)과 규소(IV)의 농도가 각각 13000과 150 mg/L인 5 M의 수산화나트륨용액에서 규소(IV)의 선택적 흡착거동에 대하여 조사했다. Hydrotalcite는 수산화나트륨용액으로부터 규소(IV)만을 선택적으로 흡착하였다. Hydrotalcite의 소성과 농도 및 NaOH의 농도가 규소(IV)의 흡착에 미치는 영향을 조사하였다. 5 M의 수산화나트륨용액에서 규소(IV)의 흡착률은 낮으나 물로 48배 희석하여 소성한 hydrotalcite의 농도가 4.5 g/L 이상인 조건에서 규소(IV)를 대부분 흡착시켜 고순도 알루미나용액을 회수할 수 있었다. 소성한 hydrotalcite에서 규소(IV)의 흡착은 Freundlich 등온흡착식과 잘 일치하였다.

Keywords

RSOCB3_2019_v28n2_54_f0001.png 이미지

Fig. 1. Schematic diagram of the silicate adsorption reaction by hydrotalcite.

RSOCB3_2019_v28n2_54_f0002.png 이미지

Fig. 2. Effect of calcination of HTC on the loading of Si(IV) in several NaOH concentrations. ([NaOH] = 2-6 M; [Aqueous] = Al(III) 13 g/L, Si(II) 0.15 g/L; [calcined HTC] = [uncalcined HTC] = 0.35 g/L)

RSOCB3_2019_v28n2_54_f0003.png 이미지

Fig. 3. Effect of calcined HTC concentration on the loading percentage of Al(III) and Si(IV).([NaOH] = 1.67 M; [Aqueous] = Al(III) 4.3 g/L, Si(II) 0.05 g/L; [calcined HTC] = 0.05-6 g/L)

RSOCB3_2019_v28n2_54_f0004.png 이미지

Fig. 4. Effect of calcined HTC concentration on the loading percentage of Al(III) and Si(IV). ([NaOH] = 0.83 M; [Aqueous] = Al(III) 2.2 g/L, Si(II) 0.025 g/L; [calcined HTC] = 0.05-6 g/L)

RSOCB3_2019_v28n2_54_f0005.png 이미지

Fig. 5. Effect of calcined HTC and NaOH concentration on the loading percentage of Al(III) and Si(IV). ([NaOH] = 5 M; [Aqueous] = Al(III) 13 g/L, Si(II) 0.15 g/L; ■ : diluted 3T, □ : diluted 6T, ● : diluted 12T, ○ : diluted 24T, ◆ : diluted 48T; [calcined HTC] = 0.05-6 g/L)

RSOCB3_2019_v28n2_54_f0006.png 이미지

Fig. 6. Adsorption amounts of Si(IV) on calcined hydrotalcite according to calcined HTC concentration and dilution. ([Aqueous] = Al(III) 13 g/L, Si(II) 0.15 g/L; ■ : diluted 3T, □ : diluted 6T, ● : diluted 12T, ○ : diluted 24T, ◆ : diluted 48T; [calcined HTC] = 0.05- 6 g/L)

RSOCB3_2019_v28n2_54_f0007.png 이미지

Fig. 7. Effect of calcined HTC concentration on solution pH. ([NaOH] = 1.67 M; [Aqueous] = Al(III) 4.3 g/L, Si(II) 0.05 g/L; [calcined HTC] = 0.05-6 g/L)

RSOCB3_2019_v28n2_54_f0008.png 이미지

Fig. 8. Effect of calcined HTC concentration on solution pH. ([NaOH] = 5 M; [Aqueous] = Al(III) 13 g/L, Si(II) 0.15 g/L; ■ : diluted 3T, □ : diluted 6T, ● : diluted 12T, ○ : diluted 24T, ◆ : diluted 48T; [calcined HTC] = 0.05-6 g/L)

RSOCB3_2019_v28n2_54_f0009.png 이미지

Fig. 9. Plots of linearized Freundlich adsorption isotherm for the loading of Si(IV) onto calcined HTC. ([NaOH] = 5 M; [Aqueous] = Al(III) 13 g/L, Si(II) 0.15 g/L; ■ : diluted 3T, □ : diluted 6T, ● : diluted 12T, ○ : diluted 24T, ◆ : diluted 48T; [calcined HTC] = 0.05- 6 g/L)

Table 1. Variation of chemical composition of the solution with dilution

RSOCB3_2019_v28n2_54_t0001.png 이미지

Table 2. Freundlich isotherm data for the adsorption of silica(IV) using calcined HTC

RSOCB3_2019_v28n2_54_t0002.png 이미지

References

  1. Kang, Y. B. et al., 2018 : A Study of Recycling Process to Recovery Valuable Resources from Aluminum Black Dross, J. of the Korean Inst. of Resources Recycling, 27(5), pp.61-68. https://doi.org/10.7844/KIRR.2018.27.5.61
  2. Xing, W. D. and Lee, M. S., 2017 : Treatment of Black Dross with Water and NaOH Solution, J. of Korean Inst. of Resources Recycling, 26(3), pp.53-60. https://doi.org/10.7844/KIRR.2017.26.3.53
  3. Nguyen, T. T. N., Lee, M. S. and Nguyen T. H., 2018 : Ball Milling Treatment of Black Dross for Selective Dissolution of Alumina in Sodium Hydroxide Leaching, Processes, 6(29), pp.1-11. https://doi.org/10.3390/pr6010001
  4. Nguyen, T. T. N. and Lee, M. S., 2019 : Improvement of Alumina Dissolution from the Mechanically Activated Dross Using Ultrasound-Assisted Leaching, Korean J. Met. Mater., 57(3), pp.154-161. https://doi.org/10.3365/KJMM.2019.57.3.154
  5. Lyu, J. and Guo, X., 2019 : Applications of Organic Ion Exchange Resins in Water Treatment, Applications of Ion Exchange Materials in the Environment, 1st Edition, Inamuddin, Ahamed, M. I., Asiri, A. M., pp.205-225, Springer Nature Switzerland AG.
  6. Ben Sik Ali, M. et al., 2004 : Silica removal using ionexchange resins, Desalination, 167, pp.273-279. https://doi.org/10.1016/j.desal.2004.06.136
  7. Meyers, P., 2004 : Behavior of Silica: Technologies Available&How They Rate, Resin Tech Inc.
  8. Neagu, V., Bunia, I. and Plesca. I, 2000 : Ionic polymers VI. Chemical stability of strong base anion exchangers in aggressive media, Polymer Degradation and Stability, 70, pp.463-468. https://doi.org/10.1016/S0141-3910(00)00142-7
  9. Aramendia, M. A. et al., 1999 : Thermal decomposition of Mg/Al and Mg/Ga layered-doulble hydroxides: a spectroscopic study, J. of Materials Chemistry, 9, pp.1603-1607. https://doi.org/10.1039/a900535h
  10. Cavani, F., Trifiro, F. and Vaccari, A., 1991 : Hydrotalcitetype anionic clays: preparation, properties and applications, Catalysis Today, 11(2), pp173-301. https://doi.org/10.1016/0920-5861(91)80068-K
  11. Valcheva-Traykova, M. L., Davidova, N. P. and Weiss, A. H., 1993 : Thermal decomposition of Mg, Al-hydrotalcite material, J. of Materials Science, 28(8), pp.2157-2162. https://doi.org/10.1007/BF00367577
  12. Lee, S. Y., Yang, H. M. and Lee, H. S., 2016 : An Experimental Study on the Properties of Chloride Binding of Mg/Al-$NO_3$ Layered Double Hydroxides in Solution, J. Korea Inst Build. Constr, 16(3), pp.219-227. https://doi.org/10.5345/JKIBC.2016.16.3.219
  13. Rhee, S. W., Kang M. J. and Moon, H. C., 1995 : Characterization of Layered Double Hydroxides(Mg-Al- $CO_3$ systems) and Rehydration Reaction of Their Calcined Products in Aqueous Chromate Solution, J. of the Korean Chemical Society, 39, 627 (1995).
  14. Rodrigues, E. et al., 2019 : Adsorption of chromium (VI) on hydrotalcite-hydroxyapatite material doped with carbon nanotubes: Equilibrium, kinetic and thermodynamic study, Applied Clay Science, 172, pp.57-64. https://doi.org/10.1016/j.clay.2019.02.018
  15. Xie, W., Peng, H. and Chen, L., 2006 : Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil, J. of Molecular Catalysis A: Chemical, 246(1-2), pp.24-32. https://doi.org/10.1016/j.molcata.2005.10.008
  16. Hsu, L. C. et al., 2019 : Adsorption mechanisms of chromate and phosphate on hydrotalcite: A combination of macroscopic and spectroscopic studies, Environmental Pollution, 247, pp.180-187. https://doi.org/10.1016/j.envpol.2019.01.012
  17. Rao, K. K., Gravelle, M., Valente, J. S. and Figueras, F., 1998 : Activation of Mg-Al Hydrotalcite Catalysts for Aldol Condensation Reactions, J. of Catalysis, 173(1), pp.115-121. https://doi.org/10.1006/jcat.1997.1878
  18. Miyata, S., 1983 : Anion-exchange properties of hydrotalcite-like compounds, Clays and Clay Minerals, 31(4), pp.305-311. https://doi.org/10.1346/CCMN.1983.0310409
  19. Goswamee, R. L., Sengupta, P., Bhattacharyya, K. G. and Dutta, D. K., 1998 : Adsorption of Cr(VI) in layered double hydroxides, Applied Clay Science, 13(1), pp.21-34. https://doi.org/10.1016/S0169-1317(98)00010-6
  20. Sasan, K., Brady, P. V., Krumhansl, J. L. and Nenoff, T. M., 2017 : Removal of dissolved silica from industrial waters using inorganic ion exchangers, J. of Water Process Engineering, 17, pp.117-123. https://doi.org/10.1016/j.jwpe.2017.02.006
  21. Sasan, K., Brady, P. V., Krumhansl, J. L. and Nenoff, T. M., 2017 : Exceptional selectivity for dissolved silicas in industrial waters using mixed oxides, J. of Water Process Engineering, 20, pp.187-192. https://doi.org/10.1016/j.jwpe.2017.11.003
  22. Lv, L. et al., 2006 : Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies, Water Research, 44(4), pp.735-743. https://doi.org/10.1016/j.watres.2005.11.043
  23. Freundlich, H. M. F., 1906 : Over the adsorption in solution, J. Phys. Chem., 57, pp.385-470.
  24. Lee, Y. J., Song, J. J. and Na, C. K., 2016 : Nitrate and Phosphate Adsorption Properties by Aminated Vinylbenzyl Chloride Grafted Polypropylene Fiber, J. Korean Soc. Environ. Eng., 38(10), pp.543-550. https://doi.org/10.4491/KSEE.2016.38.10.543