DOI QR코드

DOI QR Code

건식제련용 동 함유 슬러지 펠렛 제조 및 물리적 특성평가

Analyses of Physical Properties of Copper-contained Sludge Pelletized for Applied Pyro-metallurgical Process

  • 김수윤 (강원대학교 에너지.자원공학과) ;
  • 김영진 (한국석회석신소재연구소 연구개발실) ;
  • 김승현 (강원대학교 에너지.자원공학과) ;
  • 이재령 (강원대학교 에너지.자원공학과)
  • Kim, Suyun (Dept. of Energy & Resources Engineering, Kangwon National University) ;
  • Kim, Youngjin (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Kim, Seunghyun (Dept. of Energy & Resources Engineering, Kangwon National University) ;
  • Lee, Jaeryeong (Dept. of Energy & Resources Engineering, Kangwon National University)
  • 투고 : 2018.12.24
  • 심사 : 2019.04.15
  • 발행 : 2019.04.30

초록

인쇄회로기판(PCB) 제조 공정 중 발생된 슬러지로부터 구리성분을 건식제련방법으로 회수하기 위해서 슬러지를 원료로 한 펠렛화 연구를 진행하였다. 슬러지 펠렛화를 위해 건조, 해쇄, 입도분급의 전처리 실시하였고, 혼합 및 압축장치를 포함한 펠렛화 기기를 개발하였다. 제조된 펠렛의 물리적 특성평가는, 슬러지 입도, 펠렛화 압축 횟수를 변화시키면서 비파괴 낙하횟수, 압축강도를 측정하였다. #140 mesh over의 입자를 제거한 경우, 펠렛의 특성은 0.6 MPa, 9.3회로 향상되었으며, 여기에 #325 under 입자를 한번 더 제거한 경우 0.82 MPa, 19.0회로 더욱 더 향상되었다. 이는 조립자의 경우, 충진밀도를 감소시키고, 미립자의 경우 성형에 요구되는 점결제의 투입량을 증가시키기 때문에 나타난 결과로 판단된다.

The pelletizing of printed circuit board (PCB) sludge was researched for copper recovery in pyrometallurgical process. This pelletizing was carried out by using self-manufactured compression-type apparatus after pre-treatments (drying, water scrubbing, size classification) were proceeded. The physical properties (compression strength and drop-breakage test) were tested with a change of sludge sizing and the number of compression. In the case of using the undersized sludge of #140, its properties were improved to 0.6 MPa and 9.3 times. Moreover, they increased to 0.82 MPa and 19.0 times by using the #140 ~ 325 sludge. These imply that the packing density increases due to the elimination of large-sized sludge (#140), and also the weight of required binder decreases by the removal of fine-sized sludge (#325).

키워드

RSOCB3_2019_v28n2_31_f0001.png 이미지

Fig. 1. The flow chart of this study.

RSOCB3_2019_v28n2_31_f0002.png 이미지

Fig. 2. Schematic diagram and photo for mixer used in this study.

RSOCB3_2019_v28n2_31_f0003.png 이미지

Fig. 3. Schematic diagram and photo for compressor used in this study.

RSOCB3_2019_v28n2_31_f0004.png 이미지

Fig. 4. Manufactured pellets.

RSOCB3_2019_v28n2_31_f0005.png 이미지

Fig. 5. Sludge condition after drying.

RSOCB3_2019_v28n2_31_f0006.png 이미지

Fig. 6. Size distribution depending on size range after grinding for 20 min.

RSOCB3_2019_v28n2_31_f0007.png 이미지

Fig. 7. Yield of pellets with a change of size range of sample.

RSOCB3_2019_v28n2_31_f0008.png 이미지

Fig. 8. Compressive strength of pellets with a change of size range of sample.

RSOCB3_2019_v28n2_31_f0009.png 이미지

Fig. 9. Drop count of pellets with a change of size range of sample.

Table 1. Water content of copper-containing sludge

RSOCB3_2019_v28n2_31_t0001.png 이미지

Table 2. Chemical composition of dried copper-containing sludge

RSOCB3_2019_v28n2_31_t0002.png 이미지

Table 3. Possibility of pelletizing depending on use of binder

RSOCB3_2019_v28n2_31_t0003.png 이미지

참고문헌

  1. Gomez, F., Guzman, J. I., and Tilton, J. E., 2007 : Copper recycling and scrap availability, Resources Policy, 32, pp.183-190. https://doi.org/10.1016/j.resourpol.2007.08.002
  2. KOMIS : https://www.kores.net/komis/main/userMain/main.do
  3. Elaine, Y. L. S., 1991 : The recovery of metals from electronic scrap, JOM, 43(4), pp.53-61. https://doi.org/10.1007/BF03220549
  4. Allardycy, G. R., et al., 1992 : Process for Multiplayer Printed Circuit Board Manufacture, US Patent 5, 106, 454.
  5. Lee, J. Y., et al., 2017 : Study on the Copper Electrorefining from Copper Containing Sludge, J. of Korean Inst. of Resources Recycling, 26(6), pp.84-90. https://doi.org/10.7844/KIRR.2017.26.6.84
  6. Kim, B. S., Lee, J. C., and Lee, K. H., 2007 : A Novel Process for Extracting Valuable Metals from Waste Electric and Electronic Scrap Using Waste Copper Slag by a High Temperature Melting Method, J. of Korean Inst. of Resources Recycling, 16(3), pp.27-33.
  7. Huang, Z., Xie, F., and Ma, Y., 2011 : Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge, Journal of Hazardous Materials, 185, pp.155-161. https://doi.org/10.1016/j.jhazmat.2010.09.010
  8. Leclerc, N., Meux, E., and Lecuire, L. M., 2001 : Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride, Journal of Hazardous Materials, 91(1-3), pp.257-270. https://doi.org/10.1016/S0304-3894(01)00394-6
  9. Katou, K., et al., 2001 : Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode, Thin Solid Films, 386(2), pp.183-188. https://doi.org/10.1016/S0040-6090(00)01640-0
  10. Chang, C. J. and Liu, J. C., 1998 : Feasibility of copper leaching from an industrial sludge using ammonia solutions, Journal of Hazardous Materials, 58(1-3), pp.121-132. https://doi.org/10.1016/S0304-3894(97)00125-8
  11. Ban, B. C., et al., 2002 : Recovery of Precious Metals from Waste PCB and Auto Catalyst Using Arc Furnace, J. of Korean Inst. of Resources Recycling, 11(6), pp.3-11.
  12. Petkoca, E. N., 1997 : Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper, Hydrometallurgy, 46(3), pp.277-286. https://doi.org/10.1016/S0304-386X(97)00024-8
  13. Chen, Y. L., et al., 2011 : Hydration and leaching characteristics of cement pastes made from electroplating sludge, Waste Management, 31(6), pp.1357-1363. https://doi.org/10.1016/j.wasman.2010.12.018
  14. Tang, Y., Lee, P. H., and Shih, K., 2013 : Copper sludge from printed circuit board production/recycling for ceramic materials: A quantitative analysis of copper transformation and immobilization, Environ. Sci. Technol., 47, pp.8609-8615. https://doi.org/10.1021/es400404x
  15. Han, C. W., et al., 2017 : Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process, J. of Korean Inst. of Resources Recycling, 26(5), pp.85-96. https://doi.org/10.7844/KIRR.2017.26.5.85
  16. Jarupisitthorn, C., Pimtong, T., and Lothongkum, G., 2003 : Investigation of kinetics of zinc leaching from electric arc furnace dust by sodium hydroxide, Materials Chemistry and Physics, 77(2), pp.531-535. https://doi.org/10.1016/S0254-0584(02)00119-0
  17. Lu, C. W., Huang, S. J., and Huang, C. L., 2000 : Flicker characteristic estimation of an AC electric arc furnace, Electric Power Systems Research, 54(2), pp.121-130. https://doi.org/10.1016/S0378-7796(99)00080-2
  18. Miguel, R. G., et al., 2017 : Best available techniques (BAT) reference document for the non-ferrous metals industries, pp.68-69, Joint Research Centre, EU.
  19. Sivrikaya, O. and Arol, A. I., 2011 : Pelletization of magnetite ore with colemanite added organic binders. Powder Technology, 210(1), pp.23-28. https://doi.org/10.1016/j.powtec.2011.02.007
  20. Makoto, G., et al., 1993 : Korea, 930001333B1.
  21. Higashi, K. and Nakamura Y., 2013 : WO 2011136273A1.
  22. Go, J. R., 2012 : Korea, 101444893B1.
  23. Kim, B. H., 1998 : Korea, 1019970015766.
  24. Sivrikaya, O. and Arol, A. I., 2014 : Alternative binders to bentonite for iron ore pelletizing: Part I: Effects on physical and mechanical properties, HOLOS, 3, pp.94-103. https://doi.org/10.15628/holos.2014.1758
  25. Sivrikaya, O. and Ali, I. A., 2012 : bonding/strengthening mechanism of colemanite added organic binders in iron ore pelletization, International Journal of Mineral Processing, 110, pp.90-100. https://doi.org/10.1016/j.minpro.2012.04.010
  26. Satyananda, P., Kumar, A., and Rayasam, V., 2017 : The effect of particle size on green pellet properties of iron ore fines, Journal of Mining and Metallurgy A: Mining, 53(1), pp.31-41. https://doi.org/10.5937/JMMA1701031S
  27. Xu, D., et al., 2013 : Mechanical strength and rewetting stability of nickel laterite pellets, Advanced Powder Technology, 24(4), pp.743-749. https://doi.org/10.1016/j.apt.2013.03.014
  28. Kawatra, S. K. and Ripke, S. J., 2002 : Pelletizing steel mill desulfurization slag, International Journal of Mineral Processing, 65(3-4), pp.165-175. https://doi.org/10.1016/S0301-7516(01)00073-4