DOI QR코드

DOI QR Code

Analyses of Physical Properties of Copper-contained Sludge Pelletized for Applied Pyro-metallurgical Process

건식제련용 동 함유 슬러지 펠렛 제조 및 물리적 특성평가

  • Kim, Suyun (Dept. of Energy & Resources Engineering, Kangwon National University) ;
  • Kim, Youngjin (Department of Research and Development, Korea Institute of Limestone and Advanced Materials) ;
  • Kim, Seunghyun (Dept. of Energy & Resources Engineering, Kangwon National University) ;
  • Lee, Jaeryeong (Dept. of Energy & Resources Engineering, Kangwon National University)
  • 김수윤 (강원대학교 에너지.자원공학과) ;
  • 김영진 (한국석회석신소재연구소 연구개발실) ;
  • 김승현 (강원대학교 에너지.자원공학과) ;
  • 이재령 (강원대학교 에너지.자원공학과)
  • Received : 2018.12.24
  • Accepted : 2019.04.15
  • Published : 2019.04.30

Abstract

The pelletizing of printed circuit board (PCB) sludge was researched for copper recovery in pyrometallurgical process. This pelletizing was carried out by using self-manufactured compression-type apparatus after pre-treatments (drying, water scrubbing, size classification) were proceeded. The physical properties (compression strength and drop-breakage test) were tested with a change of sludge sizing and the number of compression. In the case of using the undersized sludge of #140, its properties were improved to 0.6 MPa and 9.3 times. Moreover, they increased to 0.82 MPa and 19.0 times by using the #140 ~ 325 sludge. These imply that the packing density increases due to the elimination of large-sized sludge (#140), and also the weight of required binder decreases by the removal of fine-sized sludge (#325).

인쇄회로기판(PCB) 제조 공정 중 발생된 슬러지로부터 구리성분을 건식제련방법으로 회수하기 위해서 슬러지를 원료로 한 펠렛화 연구를 진행하였다. 슬러지 펠렛화를 위해 건조, 해쇄, 입도분급의 전처리 실시하였고, 혼합 및 압축장치를 포함한 펠렛화 기기를 개발하였다. 제조된 펠렛의 물리적 특성평가는, 슬러지 입도, 펠렛화 압축 횟수를 변화시키면서 비파괴 낙하횟수, 압축강도를 측정하였다. #140 mesh over의 입자를 제거한 경우, 펠렛의 특성은 0.6 MPa, 9.3회로 향상되었으며, 여기에 #325 under 입자를 한번 더 제거한 경우 0.82 MPa, 19.0회로 더욱 더 향상되었다. 이는 조립자의 경우, 충진밀도를 감소시키고, 미립자의 경우 성형에 요구되는 점결제의 투입량을 증가시키기 때문에 나타난 결과로 판단된다.

Keywords

RSOCB3_2019_v28n2_31_f0001.png 이미지

Fig. 1. The flow chart of this study.

RSOCB3_2019_v28n2_31_f0002.png 이미지

Fig. 2. Schematic diagram and photo for mixer used in this study.

RSOCB3_2019_v28n2_31_f0003.png 이미지

Fig. 3. Schematic diagram and photo for compressor used in this study.

RSOCB3_2019_v28n2_31_f0004.png 이미지

Fig. 4. Manufactured pellets.

RSOCB3_2019_v28n2_31_f0005.png 이미지

Fig. 5. Sludge condition after drying.

RSOCB3_2019_v28n2_31_f0006.png 이미지

Fig. 6. Size distribution depending on size range after grinding for 20 min.

RSOCB3_2019_v28n2_31_f0007.png 이미지

Fig. 7. Yield of pellets with a change of size range of sample.

RSOCB3_2019_v28n2_31_f0008.png 이미지

Fig. 8. Compressive strength of pellets with a change of size range of sample.

RSOCB3_2019_v28n2_31_f0009.png 이미지

Fig. 9. Drop count of pellets with a change of size range of sample.

Table 1. Water content of copper-containing sludge

RSOCB3_2019_v28n2_31_t0001.png 이미지

Table 2. Chemical composition of dried copper-containing sludge

RSOCB3_2019_v28n2_31_t0002.png 이미지

Table 3. Possibility of pelletizing depending on use of binder

RSOCB3_2019_v28n2_31_t0003.png 이미지

References

  1. Gomez, F., Guzman, J. I., and Tilton, J. E., 2007 : Copper recycling and scrap availability, Resources Policy, 32, pp.183-190. https://doi.org/10.1016/j.resourpol.2007.08.002
  2. KOMIS : https://www.kores.net/komis/main/userMain/main.do
  3. Elaine, Y. L. S., 1991 : The recovery of metals from electronic scrap, JOM, 43(4), pp.53-61. https://doi.org/10.1007/BF03220549
  4. Allardycy, G. R., et al., 1992 : Process for Multiplayer Printed Circuit Board Manufacture, US Patent 5, 106, 454.
  5. Lee, J. Y., et al., 2017 : Study on the Copper Electrorefining from Copper Containing Sludge, J. of Korean Inst. of Resources Recycling, 26(6), pp.84-90. https://doi.org/10.7844/KIRR.2017.26.6.84
  6. Kim, B. S., Lee, J. C., and Lee, K. H., 2007 : A Novel Process for Extracting Valuable Metals from Waste Electric and Electronic Scrap Using Waste Copper Slag by a High Temperature Melting Method, J. of Korean Inst. of Resources Recycling, 16(3), pp.27-33.
  7. Huang, Z., Xie, F., and Ma, Y., 2011 : Ultrasonic recovery of copper and iron through the simultaneous utilization of Printed Circuit Boards (PCB) spent acid etching solution and PCB waste sludge, Journal of Hazardous Materials, 185, pp.155-161. https://doi.org/10.1016/j.jhazmat.2010.09.010
  8. Leclerc, N., Meux, E., and Lecuire, L. M., 2001 : Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride, Journal of Hazardous Materials, 91(1-3), pp.257-270. https://doi.org/10.1016/S0304-3894(01)00394-6
  9. Katou, K., et al., 2001 : Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode, Thin Solid Films, 386(2), pp.183-188. https://doi.org/10.1016/S0040-6090(00)01640-0
  10. Chang, C. J. and Liu, J. C., 1998 : Feasibility of copper leaching from an industrial sludge using ammonia solutions, Journal of Hazardous Materials, 58(1-3), pp.121-132. https://doi.org/10.1016/S0304-3894(97)00125-8
  11. Ban, B. C., et al., 2002 : Recovery of Precious Metals from Waste PCB and Auto Catalyst Using Arc Furnace, J. of Korean Inst. of Resources Recycling, 11(6), pp.3-11.
  12. Petkoca, E. N., 1997 : Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper, Hydrometallurgy, 46(3), pp.277-286. https://doi.org/10.1016/S0304-386X(97)00024-8
  13. Chen, Y. L., et al., 2011 : Hydration and leaching characteristics of cement pastes made from electroplating sludge, Waste Management, 31(6), pp.1357-1363. https://doi.org/10.1016/j.wasman.2010.12.018
  14. Tang, Y., Lee, P. H., and Shih, K., 2013 : Copper sludge from printed circuit board production/recycling for ceramic materials: A quantitative analysis of copper transformation and immobilization, Environ. Sci. Technol., 47, pp.8609-8615. https://doi.org/10.1021/es400404x
  15. Han, C. W., et al., 2017 : Phase Analysis and Thermodynamic Simulation for Recovery of Copper Metal in Sludge Originated from Printed Circuit Board Manufacturing Process by Pyro-metallurgical Process, J. of Korean Inst. of Resources Recycling, 26(5), pp.85-96. https://doi.org/10.7844/KIRR.2017.26.5.85
  16. Jarupisitthorn, C., Pimtong, T., and Lothongkum, G., 2003 : Investigation of kinetics of zinc leaching from electric arc furnace dust by sodium hydroxide, Materials Chemistry and Physics, 77(2), pp.531-535. https://doi.org/10.1016/S0254-0584(02)00119-0
  17. Lu, C. W., Huang, S. J., and Huang, C. L., 2000 : Flicker characteristic estimation of an AC electric arc furnace, Electric Power Systems Research, 54(2), pp.121-130. https://doi.org/10.1016/S0378-7796(99)00080-2
  18. Miguel, R. G., et al., 2017 : Best available techniques (BAT) reference document for the non-ferrous metals industries, pp.68-69, Joint Research Centre, EU.
  19. Sivrikaya, O. and Arol, A. I., 2011 : Pelletization of magnetite ore with colemanite added organic binders. Powder Technology, 210(1), pp.23-28. https://doi.org/10.1016/j.powtec.2011.02.007
  20. Makoto, G., et al., 1993 : Korea, 930001333B1.
  21. Higashi, K. and Nakamura Y., 2013 : WO 2011136273A1.
  22. Go, J. R., 2012 : Korea, 101444893B1.
  23. Kim, B. H., 1998 : Korea, 1019970015766.
  24. Sivrikaya, O. and Arol, A. I., 2014 : Alternative binders to bentonite for iron ore pelletizing: Part I: Effects on physical and mechanical properties, HOLOS, 3, pp.94-103. https://doi.org/10.15628/holos.2014.1758
  25. Sivrikaya, O. and Ali, I. A., 2012 : bonding/strengthening mechanism of colemanite added organic binders in iron ore pelletization, International Journal of Mineral Processing, 110, pp.90-100. https://doi.org/10.1016/j.minpro.2012.04.010
  26. Satyananda, P., Kumar, A., and Rayasam, V., 2017 : The effect of particle size on green pellet properties of iron ore fines, Journal of Mining and Metallurgy A: Mining, 53(1), pp.31-41. https://doi.org/10.5937/JMMA1701031S
  27. Xu, D., et al., 2013 : Mechanical strength and rewetting stability of nickel laterite pellets, Advanced Powder Technology, 24(4), pp.743-749. https://doi.org/10.1016/j.apt.2013.03.014
  28. Kawatra, S. K. and Ripke, S. J., 2002 : Pelletizing steel mill desulfurization slag, International Journal of Mineral Processing, 65(3-4), pp.165-175. https://doi.org/10.1016/S0301-7516(01)00073-4