DOI QR코드

DOI QR Code

DC and RF Characteristics of 100-nm mHEMT Devices Fabricated with a Two-Step Gate Recess

2단계 게이트 리세스 방법으로 제작한 100 nm mHEMT 소자의 DC 및 RF 특성

  • Yoon, Hyung Sup (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Min, Byoung-Gue (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Chang, Sung-Jae (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Jung, Hyun-Wook (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lee, Jong Min (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Seong-Il (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Chang, Woo-Jin (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kang, Dong Min (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Lim, Jong Won (RF/Power Components Research Group, ICT Materials & Components Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Kim, Wansik (LIG Nex1 Co., Ltd.) ;
  • Jung, Jooyong (LIG Nex1 Co., Ltd.) ;
  • Kim, Jongpil (LIG Nex1 Co., Ltd.) ;
  • Seo, Mihui (Agency for Defense Development) ;
  • Kim, Sosu (Agency for Defense Development)
  • 윤형섭 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 민병규 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 장성재 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 정현욱 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 이종민 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 김성일 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 장우진 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 강동민 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 임종원 (한국전자통신연구원 ICT 소재부품연구소 RF/전력부품연구그룹) ;
  • 김완식 (LIG 넥스원(주)) ;
  • 정주용 (LIG 넥스원(주)) ;
  • 김종필 (LIG 넥스원(주)) ;
  • 서미희 (국방과학연구소) ;
  • 김소수 (국방과학연구소)
  • Received : 2019.01.23
  • Accepted : 2019.04.16
  • Published : 2019.04.30

Abstract

A 100-nm gate-length metamorphic high electron mobility transistor(mHEMT) with a T-shaped gate was fabricated using a two-step gate recess and characterized for DC and microwave performance. The mHEMT device exhibited DC output characteristics having drain current($I_{dss}$), an extrinsic transconductance($g_m$) of 1,090 mS/mm and a threshold voltage($V_{th}$) of -0.65 V. The $f_T$ and $f_{max}$ obtained for the 100-nm mHEMT device were 190 and 260 GHz, respectively. The developed mHEMT will be applied in fabricating W-band monolithic microwave integrated circuits(MMICs).

본 연구에서는 2단계 게이트 리세스 방법을 사용하여 T-형 게이트 길이가 100 nm인 mHEMT 소자를 제작하였다. 제작한 소자는 65 mA의 드레인전류($I_{dss}$), 1090 mS/mm의 트랜스콘덕턴스($g_m$), -0.65 V의 문턱전압 ($V_{th}$) 등의 DC 특성을 보였다. 또한 차단주파수($f_T$) 190 GHz와 최대 공진주파수($f_{MAX}$) 260 GHz인 우수한 고주파 특성을 나타내었다. 제작한 mHEMT 소자는 향후에 W-대역의 MMIC 개발에 활용될 수 있을 것으로 기대된다.

Keywords

JJPHCH_2019_v30n4_282_f0001.png 이미지

그림 1. GaAs 기반의 mHEMT 에피탁셜 구조 Fig. 1. Epitaxial structure of GaAs-based mHEMT.

JJPHCH_2019_v30n4_282_f0002.png 이미지

그림 2. 2-Finger 게이트(50 μm×2) 100 nm mHEMT. Fig. 2. 100 nm mHEMT with 2-finger gates(50 μm×2).

JJPHCH_2019_v30n4_282_f0003.png 이미지

그림 3. 100 nm T-gate mHEMT 소자의 단면도 Fig. 3. Cross-sectional view of 100nm T-gate mHEMT.

JJPHCH_2019_v30n4_282_f0005.png 이미지

그림 5. 100 nm mHEMT 소자의 transfer 특성 Fig. 5. Transfer characteristics of 100 nm mHEMT.

JJPHCH_2019_v30n4_282_f0006.png 이미지

그림 6. 100 nm mHEMT 소자의 RF 특성 Fig. 6. RF characteristics of 100 nm mHEMT devices.

JJPHCH_2019_v30n4_282_f0007.png 이미지

그림 4. 100 nm mHEMT 소자의 I-V 특성 Fig. 4. I-V characteristics of 100 nm mHEMT.

표 1. 100 nm mHEMT 소자의 DC 및 RF 특성의 비교 Table 1. Comparisons of DC/RF characteristics for 100 nm mHEMT devices.

JJPHCH_2019_v30n4_282_t0001.png 이미지

References

  1. Y. Yamashita, A. Endoh, K. Sinohara, K. Hikosaka, T. Matsui, and S. Hiyamizu, et al., "Pseudomorphic $In_{0.52}Al_{0.48}As/In_{0.7}Ga_{0.3}As$ HEMTs with an ultrahigh $f_T$ of 562 GHz," IEEE Electron Device Letters, vol. 23, no. 10, pp. 573-575, Oct. 2002. https://doi.org/10.1109/LED.2002.802667
  2. W. R. Deal, K. Leong, V. Radisic, S. Sarkozy, B. Gorospe, and J. Lee, et al., "Low noise amplification at 0.67 THz using 30 nm InP HEMTs," IEEE Microwave and Wireless Components Letters, vol. 21, no. 7, pp. 368-370, Jul. 2011. https://doi.org/10.1109/LMWC.2011.2143701
  3. A. Leuther, A. Tessmann, M. Dammann, W. Reinert, M. Schlechtweg, and M. Mikulla, et al., "70 nm low-noise metamorphic HEMT technology on 4 inch GaAs wafers," in International Conference on Indium Phosphide and Related Materials, Santa Barbara, 2003, pp. 215-218.
  4. H. S. Yoon, J. Y. Shim, D. M. Kang, J. Y. Hong, and K. H. Lee, "Characteristics of 80 nm T-gate metamorphic HEMTs with 60% indium channel," in 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials, Matsue, 2007, pp. 110-113.
  5. H. Fourre, F. Diette, and A. Cappy, "Selective wet etching of lattice-matched InGaAs/InAlAs and metamorphic InGaAs/InAlAs on GaAs substrate using succinic Aic/Hydrogen peroxide solution," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 5, pp. 3400-3402, Sep./Oct. 1996. https://doi.org/10.1116/1.588543
  6. K. Yaohui, W. Weibo, G. Jianfeng, and C. Chen, "100 nm MHEMT transistor technology for W-band amplifier," in Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, 2014, pp. 1339-1341.