DOI QR코드

DOI QR Code

개선된 이진 입자 군집 최적화 알고리즘을 적용한 픽셀 형태 주파수 선택적 표면의 효율적인 설계방안 연구

Effective Design of Pixel-type Frequency Selective Surfaces using an Improved Binary Particle Swarm Optimization Algorithm

  • 양대도 (연세대학교 전기전자공학부) ;
  • 박찬선 (연세대학교 전기전자공학부) ;
  • 육종관 (연세대학교 전기전자공학부)
  • Yang, Dae-Do (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Park, Chan-Sun (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Yook, Jong-Gwan (Department of Electrical and Electronic Engineering, Yonsei University)
  • Received : 2018.12.05
  • Accepted : 2019.04.15
  • Published : 2019.04.30

Abstract

본 논문은 레이돔과 같은 다층구조의 주파수 선택적 표면(frequency selective surfaces: FSS)을 설계하는데, 편파나 입사각 등 다양한 고려사항에 대한 유연성을 갖는 픽셀 형태의 주파수 선택적 표면을 설계하는 것에 관한 것이다. 픽셀 형태의 FSS를 설계할 때 이산 공간 문제를 해결할 수 있는 다양한 방법 중 이진 입자 군집 최적화(binary particle swarm optimization: BPSO) 알고리즘은 FSS의 주기구조 패턴을 결정하는데 쉽게 적용 가능한 기술 중 하나이며, 따라서 향상된 BPSO 알고리즘을 통해 롤 오프 전파 투과특성을 갖는 FSS를 효율적으로 설계하는 기법을 제안하였다. 원하는 솔루션에 입자를 유도하기 위한 적합성 함수 설계에 대하여 수렴속도 문제를 해결하기 위해, '기울기'를 입력 변수로 한 적합성 함수를 적용할 경우 쉽게 원하는 전파특성을 갖는 FSS를 얻을 수 있었다.

This study investigates a method of designing pixel-type frequency selective surfaces(FSS) with flexibility while considering factors, such as polarization and incident angle. Among the various methods used to solve the discrete space problem when designing a pixel-type FSS, the binary particle swarm optimization(BPSO) algorithm is one of the most applicable techniques to determine the periodic structure pattern of an FSS. Therefore, a method of efficiently designing FSS with roll-off band pass characteristics using an improved BPSO algorithm is proposed. To solve the convergence problem in the fitness function design to induce particles in the desired solution, FSS with desired roll-off wave characteristics can be easily obtained by applying a fitness function using "slope" as an input parameter.

Keywords

JJPHCH_2019_v30n4_261_f0001.png 이미지

그림 1. PSO 알고리즘 흐름도 Fig. 1. The flowchart for PSO algorithm.

JJPHCH_2019_v30n4_261_f0002.png 이미지

그림 2. 기존의 적합성 함수 Fig. 2. Conventional fitness function.

JJPHCH_2019_v30n4_261_f0003.png 이미지

그림 3. 제안하는 기울기 기반의 적합성 함수 Fig. 3. Proposed fitness function.

JJPHCH_2019_v30n4_261_f0004.png 이미지

그림 4. 설계한 FSS 형상 및 재원 Fig. 4. The shape of FSS and parameter.

JJPHCH_2019_v30n4_261_f0005.png 이미지

그림 5. FSS 설계절차 흐름도 Fig. 5. The flowchart of the design FSS process.

JJPHCH_2019_v30n4_261_f0006.png 이미지

그림 6. FSS 구조 및 전파특성 비교 Fig. 6. Comparison of FSS structures and wave characteristics.

JJPHCH_2019_v30n4_261_f0007.png 이미지

그림 7. 기울기 기반 적합성 함수 적용한 결과 FSS의 구조 및 전파특성 Fig. 7. The transmission efficiency of FSS using slope-based fitness function.

JJPHCH_2019_v30n4_261_f0008.png 이미지

그림 8. 기존의 적합성 함수를 사용한 두 FSS의 최소 적합성 값 비교 곡선 Fig. 8. Curve of minimum fitness values comparison using conventional fitness function.

표 1. 최소 적합성 값 비교 Table 1. Minimum fitness values comparison.

JJPHCH_2019_v30n4_261_t0001.png 이미지

References

  1. T. K. Wu, Frequency Selective Surface and Grid Array, New York, NY, Wiley-Interscience, 1995.
  2. J. C. Vardaxoglou, Frequency Selective Surfaces: Analysis and Design, Taunton, Research Studies Press, 1997.
  3. B. A. Munk, Frequency Selective Surface: Theory and Design, Hoboken, John Wiley & Sons, 2005.
  4. N. Marcuvitz, Waveguide Handbook, Stevenage, IET, 1951.
  5. C. C. Chen, "Transmission through a conducting screen perforated periodically with apertures," IEEE Transaction, Microwave Theory and Techniques, vol. 18, no. 9, pp. 627-632, Sep. 1970. https://doi.org/10.1109/TMTT.1970.1127298
  6. R. Mittra, C. H. Chan, and T. Cwik, "Technique for analyzing frequency selective surfaces-a review," in Proceedings of the IEEE, Dec. 1988, vo1. 76, no. 12, pp. 1593-1615. https://doi.org/10.1109/5.16352
  7. A. E. Yilmaz, M. Kuzuoglu, "Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model," Radioengineering, vol. 18, no. 2, pp. 95-102, Jun. 2009.
  8. G. Manara, A. Monorchio, and R. Mittra, "Frequency selective surface design based on genetic algorithm," Electronics Letters, vol. 35, no. 17, pp. 1400-1401, Aug. 1999. https://doi.org/10.1049/el:19990991
  9. E. A. Parker, A. D. Chuprin, J. C. Batchelor, and S. B. Savia, "Ga optimization of crossed dipole FSS array geometry," Electronics Letters, vol. 37, no. 16, pp. 996-997, Aug. 2001. https://doi.org/10.1049/el:20010713
  10. J. A. Bossard, D. H. Werner, T. S. Mayer, and R. P. Drupp, "A novel design methodology for reconfigurable frequency selective surfaces using genetic algorithms," IEEE Transactions on Antennas and Propagation, vol. 53, no. 4, pp. 1390-1400, Apr. 2005. https://doi.org/10.1109/TAP.2005.844439
  11. S. Genovesi, R. Mittra, A. Monorchio, and G. Manara, "Particle swarm optimization for the design of frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 277-279, 2006. https://doi.org/10.1109/LAWP.2006.875900
  12. P. H. da F. Silva, R. M. S. Cruz, and A. G. d'Assuncao, "Blending PSO and ANN for optimal design of FSS filters with Koch island patch elements," IEEE Transactions on Magnetics, vol. 46, no. 8, pp. 3010-3013, Aug. 2010. https://doi.org/10.1109/TMAG.2010.2044147
  13. B. Zhang, Z. H. Xue, W. M. Li, W. Ren, and X. Q. Sheng, "Particle swarm optimization of frequency selective surface," in Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), New Taipei City, 2012, pp. 195-198.
  14. L. H. Manh, M. Mussetta, and R. E. Zich, "Evolutionary algorithm for bandstop frequency selective surface," in 2014 IEEE 5th International Conference on Communications and Electronics(ICCE), Danang, 2014, pp. 404-406.
  15. M. R. da Silva, C. de Lucena Nobrega, P. H. D. F. Silva, and A. G. d'Assuncao, "Optimal design of frequency selective surfaces with fractal motifs," IET Microwaves, Antennas & Propagation, vol. 8, no. 9, pp. 627-631, Jun. 2014. https://doi.org/10.1049/iet-map.2013.0462
  16. Z. Bayraktar, J. A. Bossard, X. Wang, and D. H. Werner, "A real-valued parallel clonal selection algorithm and its application to the design optimization of multi-layered frequency selective surfaces," IEEE Transactions on Antennas and Propagation, vol. 60, no. 4, pp. 1831-1843, Apr. 2012. https://doi.org/10.1109/TAP.2012.2186241
  17. J. Kennedy, R. Eberhart, "Particle swarm optimization," in Proceedings of IEEE International Conference on Neural Networks, 1995, vol. 4, no. 2, pp. 1942-1948.
  18. J. Kennedy, R. C. Eberhart, "A discrete binary version of the particle swarm algorithm," in 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, 1997, vol. 5, pp. 4104-4108.
  19. G. C. Luh, C. Y. Lin, and Y. S. Lin, "A binary particle swarm optimization for continuum structural topology optimization," Applied Soft Computing, vol. 11, no. 2, pp. 2833-2844, Mar. 2011. https://doi.org/10.1016/j.asoc.2010.11.013
  20. P. Y. Yin, "A discrete particle swarm algorithm for optimal polygonal approximation of digital curves," Journal of Visual Communication and Image Representation, vol. 15, no. 2, pp. 241-260, Jun. 2004. https://doi.org/10.1016/j.jvcir.2003.12.001
  21. Q. Shen, J. H. Jiang, C. X. Jiao, G. L. Shen, and R. Q. Yu, "Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists," European Journal of Pharmaceutical Sciences, vol. 22, no. 2-3, pp. 145-152, Jun. 2004. https://doi.org/10.1016/j.ejps.2004.03.002
  22. L. Wang, X. Wang, J. Fu, and L. Zhen, "A novel probability binary particle swarm optimization algorithm and its application," Journal of Software, vol. 3, no. 9, pp. 28-35, Dec. 2008.
  23. S. Lee, S. Soak, S. Oh, W. Pedrycz, and M. Jeon, "Modified binary particle swarm optimization," Progress in Natural Science, vol. 18, no. 9, pp. 1161-1166, Sep. 2008. https://doi.org/10.1016/j.pnsc.2008.03.018
  24. S. Mirjalili, A. Lewis, "S-shaped versus V-shaped transfer functions for binary particle swarm optimization," Swarm and Evolutionary Computation, vol. 9, pp. 1-14, Apr. 2013. https://doi.org/10.1016/j.swevo.2012.09.002
  25. A. L. Gutierrez, J. R. Perez, and J. Basterrechea, "Binary particle swarm optimization of FSS using a CG-FFT modelling," in 2009 3rd European Conference on Antennas and Propagation, Berlin, 2009, pp. 45-49.
  26. N. Liu, X. Sheng, C. Zhang, J. Fan, and D. Guo, "Design of FSS radome using binary particle swarm algorithm combined with pixel-overlap technique," Journal of Electromagnetic Waves and Applications, vol. 31, no. 5, pp. 522-531, Mar. 2017. https://doi.org/10.1080/09205071.2017.1294506
  27. S. Mirjalili, S. Z. M. Hashim, "BMOA: Binary magnetic optimization algorithm," International Journal of Machine Learning and Computing, vol. 2, no. 3, pp. 204-208, Jun. 2012. https://doi.org/10.7763/IJMLC.2012.V2.114
  28. E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "BGSA: binary gravitational search algorithm," Natural Computing, vol. 9, no. 3, pp. 727-745, Sep. 2010. https://doi.org/10.1007/s11047-009-9175-3
  29. R. L. Haupt, "Interfacing FEKO and MATLAB for microstrip antenna design," in 23rd Annual Review of Progress in Applied Computational Electromagnetics, Verona, pp. 332-335, Mar. 2007.