DOI QR코드

DOI QR Code

모드정합법을 이용한 평면형 전자파 흡수체 해석

Analysis of the Planar Electromagnetic Wave Absorber Using the Mode Matching Technique

  • 허준 (홍익대학교 전자전기공학부) ;
  • 박종언 (홍익대학교 메타물질전자소자연구센터) ;
  • 추호성 (홍익대학교 전자전기공학부)
  • Hur, Jun (School of Electronic and Electrical Engineering, Hongik University) ;
  • Park, Jong-Eon (Metamaterial Electronic Device Research Center, Hongik University) ;
  • Choo, Hosung (School of Electronic and Electrical Engineering, Hongik University)
  • 투고 : 2018.12.10
  • 심사 : 2019.04.04
  • 발행 : 2019.04.30

초록

본 논문에서는 모드정합법을 이용하여 평면형 전자파 흡수체의 성능을 분석한다. 제안된 전자파 흡수체는 완전도체와 자성체가 주기구조를 이루고 있으며, 평행 편파 입사파가 인가되는 조건에서 평판의 두께에 따른 투과 및 반사 전력을 계산한다. 제안된 전자파 흡수체의 경우, 특정 구조에서 자성체가 아닌 진공으로 구성된 주기적인 평판 슬릿 또는 자성체 단독으로만 존재하는 경우에 비해 높은 흡수율을 가지는 것을 확인하였다. 전체적인 흡수 및 투과 특성의 수치해석 결과는 상용 시뮬레이터와의 비교를 통해 검증하였다.

In this paper, we analyze a planar electromagnetic absorber by using the mode matching technique(MMT). The proposed electromagnetic absorber has a periodic structure composed of a perfect conductor and ferrite, and the transmitted and reflected powers in response to the incident wave with parallel polarization are calculated according to the thickness of the plate. The proposed absorber shows a high absorption compared to the cases of periodic slits with vacuum or the ferrite plate itself. The solution to the reflected and transmitted powers by MMT is also verified with the results from a commercial simulator.

키워드

JJPHCH_2019_v30n4_270_f0001.png 이미지

그림 1. 제안된 평면형 전자파 흡수체 형상 Fig. 1. Geometry of the proposed planar electromagnetic wave absorber.

JJPHCH_2019_v30n4_270_f0002.png 이미지

그림 2. 모드정합법 해석 경계면 Fig. 2. Interface of the mode matching technique.

JJPHCH_2019_v30n4_270_f0003.png 이미지

그림 3. 모드정합법과 시뮬레이터를 이용한 전력 계산 결과 Fig. 3. The result of the calculated power by using the mode matching technique and commercial simulators.

JJPHCH_2019_v30n4_270_f0004.png 이미지

그림 4. 두께에 따른 흡수능 결과 Fig. 4. Absorption according to the thickness.

참고문헌

  1. R. F. Harrington, D. T. Auckland, "Electromagnetic transmission through narrow slots in thick conducting screens," IEEE Transactions on Antennas and Propagation, vol. 28, no. 5, pp. 616-622, Sep. 1980. https://doi.org/10.1109/TAP.1980.1142382
  2. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, "Light passing through subwavelength apertures," Reviews of Modern Physics, vol. 82, no, 1, pp. 729-787, 2010. https://doi.org/10.1103/RevModPhys.82.729
  3. K. Keum, H. Piao, and J. Choi, "Design of a short/open-ended slot antenna with capacitive coupling feed strips for hepta-band mobile application," Journal of Electromagnetic Engineering and Science, vol. 18, no. 1, pp. 46-51, Jan. 2018. https://doi.org/10.26866/jees.2018.18.1.46
  4. C. Kim, Y. B. Park, "Prediction of electromagnetic wave propagation in space environments based on geometrical optics," Journal of Electromagnetic Engineering and Science, vol. 17, no. 3, pp. 165-167, Jul. 2017. https://doi.org/10.5515/JKIEES.2017.17.3.165
  5. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, "Modal analysis and coupling in metal-insulator-metal waveguides," Physical Review B, vol. 79, no. 3, p. 035120, 2009. https://doi.org/10.1103/PhysRevB.79.035120
  6. S. Yoo, J. E. Park, and H. Choo, "Resonant transmission through periodic subwavelength real metal slits in the terahertz range," IEICE Electronics Express, vol. 15, no. 14, p. 20180612, 2018. https://doi.org/10.1587/elex.15.20180612
  7. S. Yoo, J. E. Park, J. Lee, and H. Choo, "Transmission characteristics of periodic Au slits at terahertz regimes," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 29, no. 2, pp. 77-82, 2018. https://doi.org/10.5515/KJKIEES.2018.29.2.77
  8. J. E. Park, F. L. Teixeira, and B. H. V. Borges, "Analysis of deep-subwavelength Au and Ag slit transmittances at terahertz frequencies," Journal of the Optical Society of America B, vol. 33, no. 7, pp. 1355-1364, 2016. https://doi.org/10.1364/JOSAB.33.001355