Fig. 1. Epigeous growth of cucumber seedlings from day 3 to day 6 after seeds were sown in wet vermiculite.
Fig. 2. Changes in the fresh weight of developing cucumber cotyledon.
Fig. 3. Changes in unsaturated fatty acid content in cucumber cotyledons from dry seed to day 40, the second stage of cotyledon senescence.
Fig. 4. Changes in carnitine content during the development of cucumber cotyledons from the early stage of germination on day 3 to fully grown green cotyledon at day-10, as a photosynthetic leaf-like organ, and in the second stage of cotyledon senescence at day-40.
Fig. 5. A proposed model of lipid mobilization pathways [1, 18]. The triacylglycerol (TAG) form of seed storage lipid undergoes catabolic degradation to fatty acids through acyl CoA within the lipid body.
References
- Cha, H. J. and Kim, D. J. 2014. Metabolic genes expression for lipid metabolism in cucumber cotyledon development and possibility of secondary route of acetyl units. J. Life Sci. 24, 1055-1062. https://doi.org/10.5352/JLS.2014.24.10.1055
- Cha, H. J. and Kim, D. J. 2017. Assay of L-carnitine in developing cucumber cotyledon. Bull. Sci. Ed. 33, 43-50.
- Chen, Z. H., Walker, R. P., Acheson, R. M., Tecsi, L. I., Wingler, A., Lea, P. J. and Leegood, R. C. 2000. Are isocitrate lyase and phosphoenolpyruvate carboxykinase involved in gluconeogenesis during senescence of barley leaves and cucumber cotyledons? Plant Cell Physiol. 41, 960-967. https://doi.org/10.1093/pcp/pcd021
- Eastmond, P. J. and Graham, I. A. 2001. Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci. 6, 72-78. https://doi.org/10.1016/S1360-1385(00)01835-5
-
Eisenhut, M., Planchais, S., Cabassa, C., Guivarc'h, A., Justin, A. M., Taconnat, L., Renou, J. P., Linka, M., Gagneul, D., Timm, S., Bauwe, H., Carol, P. and Weber, A. P. 2013. Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient
$CO_2$ levels. Plant J. 73, 836-849. https://doi.org/10.1111/tpj.12082 - Fiume, M. M. 2012. Tentative safety assessment; Cucumis sativus (Cucumber) -Derived ingredients as used in cosmetics. Cosmetic Ingredient Review, NW, USA.
- Folch, J., Lees, M. and Slone Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
- Footitt, S., Slocombe, S. P., Larner, V., Kurup, S., Wu, Y., Larson, T., Graham, I., Baker, A. and Holdsworth, M. 2002. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 21, 2912-2922. https://doi.org/10.1093/emboj/cdf300
- Graham, I. A., Smith, L. M., Leaver, C. J. and Smith, S. M. 1990. Developmental regulation of expression of the malate synthase gene in transgenic plants. Plant Mol. Biol. 15, 539-549. https://doi.org/10.1007/BF00017829
- Graham, I. A., Leaver, C. J. and Smith, S. M. 1992. Induction of malate synthase gene expression in senescent and detached organs of cucumber. Plant Cell 4, 349-357. https://doi.org/10.1105/tpc.4.3.349
- Hoppel, C. 2003. The role of carnitine in normal and altered fatty acid metabolism. Am. J. Kidney Dis. 41(4 Suppl 4), S4-12. https://doi.org/10.1016/S0272-6386(03)00112-4
- Kim, D. J. and Smith, S. M. 1994. Molecular cloning of cucumber phosphoenolpyruvate carboxykinase and developmental regulation of gene expression. Plant Mol. Biol. 26, 423-434. https://doi.org/10.1007/BF00039551
- Lawand, S., Dorne, A. J., Long, D., Coupland, G., Mache, R. and Carol, P. 2002. Arabidopsis A BOUT DE SOUFFLE, which is homologous with mammalian carnitine acyl carrier, is required for postembryonic growth in the light. Plant Cell 14, 2161-2173. https://doi.org/10.1105/tpc.002485
- Munshi, S. K., Sandhu, S. and Sharma, S. 2007. Lipid composition in fast and slow germination sunflower (Helianthus annuus L.) seeds. Gen. Appl. Plant Physiol. 33, 235-246.
- Nguyen, P. J., Rippa S., Rossez, Y. and Perrin, Y. 2016. Acylcarnitines participate in developmental processes associated to lipid metabolism in plants. Planta 243, 1011-1022. https://doi.org/10.1007/s00425-016-2465-y
- Penfield, S., Penfield-Wells, H. M. and Graham, I. A. 2006. Storage reserve mobilization and seedling establishment in Arabidopsis. Arabidopsis Book 4, 1-17.
- Pinfield-Wells, H., Rylott, E. L., Gilday, A. D., Graham, S., Job, K., Larson, T. R. and Graham, I. A. 2005. Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J. 43, 861-872. https://doi.org/10.1111/j.1365-313X.2005.02498.x
- Pracharoenwattana, I., Cornah, J. E. and Smith, S. M. 2005. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17, 2037-2048. https://doi.org/10.1105/tpc.105.031856
- Reis, A., Rudnitskaya, A., Blackburn, G. J., Mohd Fauzi, N., Pitt, A. R. and Spickett, C. M. 2013. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 54, 1812-1824. https://doi.org/10.1194/jlr.M034330
- Reynolds, S. J. and Smith, S. M. 1995. The isocitrate lyase gene of cucumber: Isolation, characterization and expression in cotyledons following seed germination. Plant Mol. Biol. 27, 487-497 https://doi.org/10.1007/BF00019316
- Robinson, R. W. and Deckers-Waters, D. S. 1997. Cucurbits, pp 34-38, 1st ed, CAB International: Oxford, UK.
- Rylott, E. L., Hooks, M. A. and Graham, I. A. 2001. Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem. Soc. Trans. 29, 283-287. https://doi.org/10.1042/bst0290283
- Schwadbedissen-Gerbling, H. and Gerhardt, B. 1995. Purification and characterization of carnitine acyltransferase from higher plant mitochondria. Phytochemistry 39, 39-44. https://doi.org/10.1016/0031-9422(95)95267-X
- Smith, S. M. 2002. Does the glyoxylate cycle have an anaplerotic function in plants? Trends Plant Sci. 7, 12-13. https://doi.org/10.1016/S1360-1385(01)02189-6
- Strijbis, K. and Distel, B. 2010. Intracellular acetyl unit transport in fungal darbon metabolism. Eukaryot. Cell 9, 1809-1815. https://doi.org/10.1128/EC.00172-10
- Watanabe, M., Balazadeh, S., Tohge, T., Erban, A., Giavalisco, P., Kopka, J., Mueller-Roeber, B., Fernie, A. R. and Hoefgen, R. 2013. Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol. 162, 1290-1310. https://doi.org/10.1104/pp.113.217380
- Weir, E. M., Riezman, H., Grienenberger, J. M., Becker, W. M. and Leaver, C. J. 1980. Regulation of glyoxysomal enzymes during germination of cucumber. Temporal changes in translatable mRNAs for isocitrate lyase and malate synthase. Eur. J. Biochem. 112, 469-477. https://doi.org/10.1111/j.1432-1033.1980.tb06109.x