DOI QR코드

DOI QR Code

Measurement of and Changes in L-carnitine Levels in Developing Cucumber Cotyledon

오이 떡잎의 발달 과정에서 carnitine의 검출과 변화

  • Cha, Hyeon Jeong (Department of Science Education, Graduate School, Chungbuk National University) ;
  • Kim, Dae-Jae (Department of Biology Education, College of Education, Chungbuk National University)
  • 차현정 (충북대학교 대학원) ;
  • 김대재 (충북대학교 사범대학 생물교육과)
  • Received : 2019.02.15
  • Accepted : 2019.03.15
  • Published : 2019.04.30

Abstract

Mobilization of storage lipids is critical for the germination of oil seeds, as they supply carbon and energy until photosynthesis commences in cotyledons. In this study, we determined the levels of plant carnitine and associated changes in these levels from seed germination to cotyledon senescence. We also examined changes in the content of unsaturated fatty acids throughout seedling development. Carnitine levels peaked on day 3 at 14.5 nM in cotyledons and decreased sharply to 7.2 nM on day 4. On development day 3 carnitine levels were maintained at around 3 nM until day 7. The unsaturated fatty acid content dropped by half at the same time as carnitine peaked (day-3), and storage lipids were almost depleted by day 5. Thereafter, carnitine was hardly detected until the second stage of cotyledon senescence, at which stage the carnitine content was 6.8 nM, similar to that on day 4 at the time of fatty acid depletion in the cotyledons. Unsaturated fatty acids levels remained constant in green cotyledons but slightly increased in the senescing cotyledons. The latter can be explained by intracellular breakdown of membrane lipids. This is the first such discovery in developing cotyledons and may offer clues regarding other roles of the acetyl unit transport system in plants. The expression of BOU was closely associated with carnitine metabolism during seed germination and cotyledon development. The results provide support for the possibility of carbon re-routing during the glyoxylate cycle in the supply of energy for early germination and development.

지방 저장 종자의 발아 시 저장 지방의 유동은 떡잎이 스스로 광합성을 하기 전까지 탄소 에너지원을 공급하기 위한 핵심적인 대사과정이다. 본 연구에서는 오이 종자의 발아와 유식물의 발달 및 노쇠화 과정의 떡잎에서 식물성 카니틴의 검출과 변화를 처음으로 보고하고자 한다. 또한 오이 떡잎의 전 발달과정에서 불포화 지방산의 변화를 조사하였다. 카니틴은 오이 종자의 파종 후 3일째 떡잎에서 14.5 nM 수준으로 최고조에 달하며, 4일째에는 그 절반 수준인 7.2 nM 수준으로 급격하게 감소하였다. 이후 이어지는 3일 동안 7일째까지 카니틴은 ~3.0 nM 수준을 유지하였다. 같은 시기 불포화 지방산의 함량은 카니틴이 최고조에 달하는 파종 후 3일째 급격히 떨어지고, 5일째 저장 지방은 완전히 고갈되는 것으로 보인다. 파종 9일째부터 카니틴은 검출되지 않았으나 떡잎이 절반 노랗게 변한 노쇠화 중기의 떡잎에서 6.8 nM 수준으로 검출되었는데, 이 검출량은 오이 종자의 파종 후 저장 지방이 고갈되어가는 4일째 떡잎에서 검출된 카니틴의 양과 비슷한 수준이다. 파종 5일 이후 광합성 기능을 완전히 확보한 녹색 떡잎에서 불포화 지방산은 일정한 수준을 유지하며, 노쇠화 단계에 접어든 떡잎에서는 세포의 내막 구조물들이 파괴되며 또다시 불포화 지방산의 함량이 다소 증가하는 것을 관찰할 수 있었다. 이러한 카니틴과 불포화 지방산의 검출과 변화의 관찰은 오이 떡잎의 발달과정에서 밝혀진 최초의 발견이다. 이것은 오이 종자의 발아와 떡잎의 발달과정에 카니틴 대사와 관련 BOU 유전자 발현이 밀접하게 공조함을 확인한 것이다. 또한 오이 종자의 발아과정에 에너지를 공급하기 위한 글라이옥실산 회로와 더불어 부가적인 탄소원 이동의 경로의 가능성을 뒷받침한다.

Keywords

SMGHBM_2019_v29n4_421_f0001.png 이미지

Fig. 1. Epigeous growth of cucumber seedlings from day 3 to day 6 after seeds were sown in wet vermiculite.

SMGHBM_2019_v29n4_421_f0002.png 이미지

Fig. 2. Changes in the fresh weight of developing cucumber cotyledon.

SMGHBM_2019_v29n4_421_f0003.png 이미지

Fig. 3. Changes in unsaturated fatty acid content in cucumber cotyledons from dry seed to day 40, the second stage of cotyledon senescence.

SMGHBM_2019_v29n4_421_f0004.png 이미지

Fig. 4. Changes in carnitine content during the development of cucumber cotyledons from the early stage of germination on day 3 to fully grown green cotyledon at day-10, as a photosynthetic leaf-like organ, and in the second stage of cotyledon senescence at day-40.

SMGHBM_2019_v29n4_421_f0005.png 이미지

Fig. 5. A proposed model of lipid mobilization pathways [1, 18]. The triacylglycerol (TAG) form of seed storage lipid undergoes catabolic degradation to fatty acids through acyl CoA within the lipid body.

References

  1. Cha, H. J. and Kim, D. J. 2014. Metabolic genes expression for lipid metabolism in cucumber cotyledon development and possibility of secondary route of acetyl units. J. Life Sci. 24, 1055-1062. https://doi.org/10.5352/JLS.2014.24.10.1055
  2. Cha, H. J. and Kim, D. J. 2017. Assay of L-carnitine in developing cucumber cotyledon. Bull. Sci. Ed. 33, 43-50.
  3. Chen, Z. H., Walker, R. P., Acheson, R. M., Tecsi, L. I., Wingler, A., Lea, P. J. and Leegood, R. C. 2000. Are isocitrate lyase and phosphoenolpyruvate carboxykinase involved in gluconeogenesis during senescence of barley leaves and cucumber cotyledons? Plant Cell Physiol. 41, 960-967. https://doi.org/10.1093/pcp/pcd021
  4. Eastmond, P. J. and Graham, I. A. 2001. Re-examining the role of the glyoxylate cycle in oilseeds. Trends Plant Sci. 6, 72-78. https://doi.org/10.1016/S1360-1385(00)01835-5
  5. Eisenhut, M., Planchais, S., Cabassa, C., Guivarc'h, A., Justin, A. M., Taconnat, L., Renou, J. P., Linka, M., Gagneul, D., Timm, S., Bauwe, H., Carol, P. and Weber, A. P. 2013. Arabidopsis A BOUT DE SOUFFLE is a putative mitochondrial transporter involved in photorespiratory metabolism and is required for meristem growth at ambient $CO_2$ levels. Plant J. 73, 836-849. https://doi.org/10.1111/tpj.12082
  6. Fiume, M. M. 2012. Tentative safety assessment; Cucumis sativus (Cucumber) -Derived ingredients as used in cosmetics. Cosmetic Ingredient Review, NW, USA.
  7. Folch, J., Lees, M. and Slone Stanley, G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497-509. https://doi.org/10.1016/S0021-9258(18)64849-5
  8. Footitt, S., Slocombe, S. P., Larner, V., Kurup, S., Wu, Y., Larson, T., Graham, I., Baker, A. and Holdsworth, M. 2002. Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J. 21, 2912-2922. https://doi.org/10.1093/emboj/cdf300
  9. Graham, I. A., Smith, L. M., Leaver, C. J. and Smith, S. M. 1990. Developmental regulation of expression of the malate synthase gene in transgenic plants. Plant Mol. Biol. 15, 539-549. https://doi.org/10.1007/BF00017829
  10. Graham, I. A., Leaver, C. J. and Smith, S. M. 1992. Induction of malate synthase gene expression in senescent and detached organs of cucumber. Plant Cell 4, 349-357. https://doi.org/10.1105/tpc.4.3.349
  11. Hoppel, C. 2003. The role of carnitine in normal and altered fatty acid metabolism. Am. J. Kidney Dis. 41(4 Suppl 4), S4-12. https://doi.org/10.1016/S0272-6386(03)00112-4
  12. Kim, D. J. and Smith, S. M. 1994. Molecular cloning of cucumber phosphoenolpyruvate carboxykinase and developmental regulation of gene expression. Plant Mol. Biol. 26, 423-434. https://doi.org/10.1007/BF00039551
  13. Lawand, S., Dorne, A. J., Long, D., Coupland, G., Mache, R. and Carol, P. 2002. Arabidopsis A BOUT DE SOUFFLE, which is homologous with mammalian carnitine acyl carrier, is required for postembryonic growth in the light. Plant Cell 14, 2161-2173. https://doi.org/10.1105/tpc.002485
  14. Munshi, S. K., Sandhu, S. and Sharma, S. 2007. Lipid composition in fast and slow germination sunflower (Helianthus annuus L.) seeds. Gen. Appl. Plant Physiol. 33, 235-246.
  15. Nguyen, P. J., Rippa S., Rossez, Y. and Perrin, Y. 2016. Acylcarnitines participate in developmental processes associated to lipid metabolism in plants. Planta 243, 1011-1022. https://doi.org/10.1007/s00425-016-2465-y
  16. Penfield, S., Penfield-Wells, H. M. and Graham, I. A. 2006. Storage reserve mobilization and seedling establishment in Arabidopsis. Arabidopsis Book 4, 1-17.
  17. Pinfield-Wells, H., Rylott, E. L., Gilday, A. D., Graham, S., Job, K., Larson, T. R. and Graham, I. A. 2005. Sucrose rescues seedling establishment but not germination of Arabidopsis mutants disrupted in peroxisomal fatty acid catabolism. Plant J. 43, 861-872. https://doi.org/10.1111/j.1365-313X.2005.02498.x
  18. Pracharoenwattana, I., Cornah, J. E. and Smith, S. M. 2005. Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell 17, 2037-2048. https://doi.org/10.1105/tpc.105.031856
  19. Reis, A., Rudnitskaya, A., Blackburn, G. J., Mohd Fauzi, N., Pitt, A. R. and Spickett, C. M. 2013. A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. J. Lipid Res. 54, 1812-1824. https://doi.org/10.1194/jlr.M034330
  20. Reynolds, S. J. and Smith, S. M. 1995. The isocitrate lyase gene of cucumber: Isolation, characterization and expression in cotyledons following seed germination. Plant Mol. Biol. 27, 487-497 https://doi.org/10.1007/BF00019316
  21. Robinson, R. W. and Deckers-Waters, D. S. 1997. Cucurbits, pp 34-38, 1st ed, CAB International: Oxford, UK.
  22. Rylott, E. L., Hooks, M. A. and Graham, I. A. 2001. Co-ordinate regulation of genes involved in storage lipid mobilization in Arabidopsis thaliana. Biochem. Soc. Trans. 29, 283-287. https://doi.org/10.1042/bst0290283
  23. Schwadbedissen-Gerbling, H. and Gerhardt, B. 1995. Purification and characterization of carnitine acyltransferase from higher plant mitochondria. Phytochemistry 39, 39-44. https://doi.org/10.1016/0031-9422(95)95267-X
  24. Smith, S. M. 2002. Does the glyoxylate cycle have an anaplerotic function in plants? Trends Plant Sci. 7, 12-13. https://doi.org/10.1016/S1360-1385(01)02189-6
  25. Strijbis, K. and Distel, B. 2010. Intracellular acetyl unit transport in fungal darbon metabolism. Eukaryot. Cell 9, 1809-1815. https://doi.org/10.1128/EC.00172-10
  26. Watanabe, M., Balazadeh, S., Tohge, T., Erban, A., Giavalisco, P., Kopka, J., Mueller-Roeber, B., Fernie, A. R. and Hoefgen, R. 2013. Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol. 162, 1290-1310. https://doi.org/10.1104/pp.113.217380
  27. Weir, E. M., Riezman, H., Grienenberger, J. M., Becker, W. M. and Leaver, C. J. 1980. Regulation of glyoxysomal enzymes during germination of cucumber. Temporal changes in translatable mRNAs for isocitrate lyase and malate synthase. Eur. J. Biochem. 112, 469-477. https://doi.org/10.1111/j.1432-1033.1980.tb06109.x