DOI QR코드

DOI QR Code

CESÀRO-HYPERCYCLIC AND HYPERCYCLIC OPERATORS

  • Received : 2018.04.21
  • Accepted : 2018.10.12
  • Published : 2019.04.30

Abstract

In this paper we provide a $Ces{\grave{a}}ro$-hypercyclicity criterion and offer two examples of this criterion. At the same time, we also characterize other properties of $Ces{\grave{a}}ro$-hypercyclic operators.

Keywords

References

  1. F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009.
  2. P. S. Bourdon and J. H. Shapiro, Cyclic phenomena for composition operators, Mem. Amer. Math. Soc. 125 (1997), no. 596, x+105 pp.
  3. M. El Berrag and A. Tajmouati, On subspace-supercyclic semigroup, Commun. Korean Math. Soc. 33 (2018), no. 1, 157-164. https://doi.org/10.4134/CKMS.C170047
  4. N. S. Feldman, Hypercyclicity and supercyclicity for invertible bilateral weighted shifts, Proc. Amer. Math. Soc. 131 (2003), no. 2, 479-485. https://doi.org/10.1090/S0002-9939-02-06537-1
  5. N. S. Feldman, V. G. Miller, and T. L. Miller, Hypercyclic and supercyclic cohyponormal operators, Acta Sci. Math. (Szeged) 68 (2002), no. 1-2, 303-328.
  6. R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288. https://doi.org/10.1090/S0002-9939-1987-0884467-4
  7. K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
  8. H. M. Hilden and L. J. Wallen, Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1973/74), 557-565. https://doi.org/10.1512/iumj.1974.23.23046
  9. C. Kitai, Invariant Closed Sets for Linear Operators, ProQuest LLC, Ann Arbor, MI, 1982.
  10. F. Leon-Saavedra, Operators with hypercyclic Cesaro means, Studia Math. 152 (2002), no. 3, 201-215. https://doi.org/10.4064/sm152-3-1
  11. S. Rolewicz, On orbits of elements, Studia Math. 32 (1969), 17-22. https://doi.org/10.4064/sm-32-1-17-22
  12. H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (1995), no. 3, 993-1004. https://doi.org/10.1090/S0002-9947-1995-1249890-6
  13. H. N. Salas, Supercyclicity and weighted shifts, Studia Math. 135 (1999), no. 1, 55-74. https://doi.org/10.4064/sm-135-1-55-74
  14. A. Tajmouati and M. El berrag, Some results on hypercyclicity of tuple of operators, Ital. J. Pure Appl. Math. No. 35 (2015), 487-492.