References
- T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
- H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910x521643
- D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661-676. https://doi.org/10.1090/S0894-0347-1994-1242454-2
- D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3275-3278. https://doi.org/10.1090/S0002-9939-01-06144-5
- V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N. Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
- M. Elin, F. Jacobzon, M. Levenshtein, and D. Shoikhet, The Schwarz lemma: rigidity and dynamics, in Harmonic and complex analysis and its applications, 135-230, Trends Math, Birkhauser/Springer, Cham, 2014.
- G. M. Goluzin, Geometrical Theory of Functions of Complex Variable (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
-
I. S. Jack, Functions starlike and convex of order
${\alpha}$ , J. London Math. Soc. (2) 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469 - M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), no. 3, 275-284.
- M. Jeong, The Schwarz lemma and its application at a boundary point, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 3, 219-227.
- M. Mateljevic, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate 2015.
- M. Mateljevic, Schwarz lemma, the Caratheodory and Kobayashi Metrics and Applications in Complex Analysis, XIX GEOMETRICAL SEMINAR, At Zlatibor. (2016), 1-12.
- M. Mateljevic, Hyperbolic geometry and Schwarz lemma, ResearchGate 2016.
- M. Nunokawa and J. Sokol, On multivalent functions in the unit disc, Tsukuba J. Math. 41 (2017), no. 2, 251-263. https://doi.org/10.21099/tkbjm/1521597625
- R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
- B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
- B. N. Ornek, Inequalities for the non-tangential derivative at the boundary for holomorphic function, Commun. Korean Math. Soc. 29 (2014), no. 3, 439-449. https://doi.org/10.4134/CKMS.2014.29.3.439
- B. N. Ornek, Inequalities for the angular derivatives of certain classes of holomorphic functions in the unit disc, Bull. Korean Math. Soc. 53 (2016), no. 2, 325-334. https://doi.org/10.4134/BKMS.2016.53.2.325
- B. N. Ornek, Estimates for holomorphic functions concerned with Jack's lemma, Publications de l'Institut Mathematique, In press.
- Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.