DOI QR코드

DOI QR Code

APPLICATIONS OF JACK'S LEMMA FOR CERTAIN SUBCLASSES OF HOLOMORPHIC FUNCTIONS ON THE UNIT DISC

  • Received : 2018.04.16
  • Accepted : 2018.09.07
  • Published : 2019.04.30

Abstract

In this paper, we give some results on ${\frac{zf^{\prime}(z)}{f(z)}}$ for the certain classes of holomorphic functions in the unit disc $E=\{z:{\mid}z{\mid}<1\}$ and on ${\partial}E=\{z:{\mid}z{\mid}=1\}$. For the function $f(z)=z^2+c_3z^3+c_4z^4+{\cdots}$ defined in the unit disc E such that $f(z){\in}{\mathcal{A}}_{\alpha}$, we estimate a modulus of the angular derivative of ${\frac{zf^{\prime}(z)}{f(z)}}$ function at the boundary point b with ${\frac{bf^{\prime}(b)}{f(b)}}=1+{\alpha}$. Moreover, Schwarz lemma for class ${\mathcal{A}}_{\alpha}$ is given. The sharpness of these inequalities is also proved.

Keywords

References

  1. T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
  2. H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910x521643
  3. D. M. Burns and S. G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661-676. https://doi.org/10.1090/S0894-0347-1994-1242454-2
  4. D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3275-3278. https://doi.org/10.1090/S0002-9939-01-06144-5
  5. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. (N. Y.) 122 (2004), no. 6, 3623-3629; translated from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 286 (2002), Anal. Teor. Chisel i Teor. Funkts. 18, 74-84, 228-229. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  6. M. Elin, F. Jacobzon, M. Levenshtein, and D. Shoikhet, The Schwarz lemma: rigidity and dynamics, in Harmonic and complex analysis and its applications, 135-230, Trends Math, Birkhauser/Springer, Cham, 2014.
  7. G. M. Goluzin, Geometrical Theory of Functions of Complex Variable (Russian), Second edition. Edited by V. I. Smirnov. With a supplement by N. A. Lebedev, G. V. Kuzmina and Ju. E. Alenicyn, Izdat. "Nauka", Moscow, 1966.
  8. I. S. Jack, Functions starlike and convex of order ${\alpha}$, J. London Math. Soc. (2) 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
  9. M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 18 (2011), no. 3, 275-284.
  10. M. Jeong, The Schwarz lemma and its application at a boundary point, J. Korean Soc. Math. Educ. Ser. B Pure Appl. Math. 21 (2014), no. 3, 219-227.
  11. M. Mateljevic, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate 2015.
  12. M. Mateljevic, Schwarz lemma, the Caratheodory and Kobayashi Metrics and Applications in Complex Analysis, XIX GEOMETRICAL SEMINAR, At Zlatibor. (2016), 1-12.
  13. M. Mateljevic, Hyperbolic geometry and Schwarz lemma, ResearchGate 2016.
  14. M. Nunokawa and J. Sokol, On multivalent functions in the unit disc, Tsukuba J. Math. 41 (2017), no. 2, 251-263. https://doi.org/10.21099/tkbjm/1521597625
  15. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  16. B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
  17. B. N. Ornek, Inequalities for the non-tangential derivative at the boundary for holomorphic function, Commun. Korean Math. Soc. 29 (2014), no. 3, 439-449. https://doi.org/10.4134/CKMS.2014.29.3.439
  18. B. N. Ornek, Inequalities for the angular derivatives of certain classes of holomorphic functions in the unit disc, Bull. Korean Math. Soc. 53 (2016), no. 2, 325-334. https://doi.org/10.4134/BKMS.2016.53.2.325
  19. B. N. Ornek, Estimates for holomorphic functions concerned with Jack's lemma, Publications de l'Institut Mathematique, In press.
  20. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer-Verlag, Berlin, 1992.