Fig. 1. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of Carboone
Fig. 6. Correlation factor in pore development model of sample
Fig. 2. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of adaro
Fig. 3. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of baganuur
Fig. 4. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of WP
Table 1. Basic properties of low rank coal and biomass
Table 2. Structural parameter and a, b, c of pore development models
Table 3. t0.5 values of experimental samples
Fig. 5. Pore development models comparison between (a) reaction rate over Carbon conversion (b) reaction rate over Tau of Kenaf
References
- G. M. Kim, J. H. Kim, K. Y. Lisandy, G. B. Kim, and C. H. Jeon, "Reaction Rate Analysis of Combustion for Indonesian Ash-free Coal Char at High Temperature", Journal of Energy Engineering, Vol. 24, 2015, pp. 232-239, doi: http://dx.doi.org/10.5855/ENERGY.2015.24.4.232.
- Korean Administration, "8th Basic Plan for Long Term Electricity Demand and Supply", Industry and Energy, 2017. Retrieved from http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_cd_n=81&bbs_seq_n=160040.
- B. M. Jenkins, L. L. Baxter, T. R. Miles Jr, and T. R. Miles, "Combustion properties of biomass", Fuel processing Technology, Vol. 54, No. 1-3, 1998, pp. 17-46, doi: https://doi.org/10.1016/S0378-3820(97)00059-3.
- A. Demirbas, "Combustion characteristics of different biomass fuels", Progress in Energy and Combustion Science, Vol. 30, No. 2, 2004, pp. 219-230, doi: https://doi.org/10.1016/j.pecs.2003.10.004.
- G. R. Gavalas, "Random Capillary Model with Application to Char Gasification at Chemically Controlled Rates", American Institute of Chemical Engineering, Vol. 26, No. 4, 1980, pp. 577-584, doi: https://doi.org/10.1002/aic.690260408.
- S. K. Bhatia and D. D. Perlmutter, "A Random Pore Model for Fluid-Solid Reactions: I. Isothermal, Kinetic Control", American Institute of Chemical Engineering, Vol. 26, No. 3, 1980, pp. 379-385, doi: https://doi.org/10.1002/aic.690260308.
- S. K. Bhatia and D. D. Perlmutter, "A Random Pore Model for Fluid-Solid Reactions: II. Diffusion and Transport Effects", American Institute of Chemical Engineering, Vol. 27, No. 2, 1981, pp. 247-254, doi: https://doi.org/10.1002/aic.690270211.
- K. Miura and P. L. Silverston, "Analysis of Gas-Solid Reactions by Use of a Temperature-Programmed Reaction Technique", Energy Fuels, Vol. 3, No. 2, 1989, pp. 243-249, doi: http://dx.doi.org/10.1021/ef00014a020.
- K. Sangtong-Ngam and M. H. Narasingha, "Kinetic study of Thai-lignite Char Gasification Using the Random Pore Model", Int. J. Sc. Tech, Vol. 13. 2008, pp. 16-26. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=A87CFF93905080CE4521AD090B040F04?doi=10.1.1.566.5752&rep=rep1&type=pdf.
- J. Fermoso, M. V. Gil, C. Pevida, J. J. Pis, and F. Rubiera, "Kinetic models comparison for non-isothermal steam gasification of coal-biomass blend chars", Chemical Engineering Science, Vol. 161, No. 1-2, 2010, pp. 276-284, doi: https://doi.org/10.1016/j.cej.2010.04.055.
- M. Sahimi, G. R. Gavalas, and T. T. Tsotsis, "Statistical and Continuum Models of Fluid-Solid Reactions in Porous Media", Chemical Engineering Science, Vol. 45, No. 6, 1990, pp. 1443-1502, doi: https://doi.org/10.1016/0009-2509(90)80001-U.
- K. Al-Qayim, W. Nimmo, K. Hughes, and M. Pourkashanian, "Kinetic parameters of the intrinsic reactivity of woody biomass and coal chars via thermogravimetric analysis", Fuel, Vol. 210, 2017, pp. 811-825, doi: https://doi.org/10.1016/j.fuel.2017.09.010.
-
M. V. Gil, J. Riaza, L. Alvarez, C. Pevida, J. J. Pis, and F. Rubiera, "Kinetic models for the oxy-fuel combustion of coal and coal/biomass blend chars obtained in
$N_2$ and$CO_2$ atmospheres", Energy, Vol. 48, No. 1, 2012, pp. 510-518, doi: https://doi.org/10.1016/j.energy.2012.10.033. -
M. V. Gil, J. Riaza, L. Alvarez, C. Pevida, J. J. Pis, and F. Rubiera, "Oxy-fuel combustions and morphology of coal chars obtained in
$N_2$ and$CO_2$ atmospheres in an entrained flow reactor", Applied Energy, Vol. 91, No. 1, 2012, pp. 67-74, doi: https://doi.org/10.1016/j.apenergy.2011.09.017. - V. Leroy, D. Cancellieri, E. Leoni, and J. L. Rossi, "Kinetic study of forest fuels by TGA : Model-free kinetic approach for the prediction of phenomena", Thermochimica Acta, Vol. 497, No. 1-2, 2010, pp. 1-6, doi: https://doi.org/10.1016/j.tca.2009.08.001.
- G. Grasa, R. Murillo, M. Alonso, and J. C. Abanades, "Application of the Random Pore Model to the Carbonation Cyclic Reaction", American Institute of Chemical Engineers, Vol. 55, No. 5, 2009, pp. 1246-1255, doi: https://doi.org/10.1002/aic.11746.
- R. C. Everson, H. W. J. P. Neomagus, and R. Kaitano, "The random pore model with intraparticle diffusion for the description of combustion of char particles derived from mineral and inertinite rich coal", Fuel, Vol. 90, No. 7, 2011, pp. 2347-2352, doi: https://doi.org/10.1016/j.fuel.2011.03.012.
-
H. Fei, S. Hu, J. Xiang, L. Sun, P. Fu, and G. Chen, "Study on coal chars combustion under
$O_2/CO_2$ atmosphere with fractal random pore model", Fuel, Vol. 90, No. 2, 2011, pp. 441-448, doi: https://doi.org/10.1016/j.fuel.2010.09.027. - H. Fei, L. Sun, S. Hu, J. Xiang, Y. Song, B. Wang, and G. Chen, "The combustion reactivity of coal chars in oxyfuel atmosphere: Comparison of different random pore models", Journal of Analytical and Applied Pyrolysis, Vol. 91, No. 1, 2011, pp. 251-256, doi: https://doi.org/10.1016/j.jaap.2011.02.014.
-
G. Wang, J. Zhang, J. Shao, Z. Liu, H. Wang, X. Li, P. Zhang, W. Geng, and G. Zhang, "Experimental and modeling studies on
$CO_2$ gasification of biomass chars", Energy, Vol. 114, 2016, pp. 143-154, doi: https://doi.org/10.1016/j.energy.2016.08.002. - J. S. Gupta and S. K. Bhatia, "A modified discrete random pore model allowing for different initial surface reactivity", Carbon, Vol. 38, No. 1, 2000, pp. 47-58, doi: https://doi.org/10.1016/S0008-6223(99)00095-0.
- K. Y. Lisandy, G. M. Kim, J. H Kim, G. B. Kim, and C. H. Jeon, "Enhanced Accuracy of the Reaction Rate Prediction Model for Carbonaceous Solid Fuel Combustion", Energy Fuels, Vol. 31, No. 5, 2017, pp. 5135-5144, doi: http://dx.doi.org/10.1021/acs.energyfuels.7b00159.
- G. M. Kim, J. P. Kim, K. Y. Lisandy, and C. H. Jeon, "Experimental Model Development of Oxygen-Enriched Combustion Kinetics on Porous Coal Char and Non-Porous Graphite", Energies, Vol. 10, No. 9, 2017, p. 1436, doi: https://doi.org/10.3390/en10091436.
- S. Gil, P. Mocek, and W. Bialik, "Changes in total active centres on particle surfaces during coal pyrolysis, gasification and combustion", Chemical and Process Engineering, Vol. 32, No. 2, 2011, pp. 155-169, doi: https://doi.org/10.2478/v10176-011-0012-8.
-
S. Dasappa, P. J. Paul, H. S. Mukunda, and U. Shrinivasa, "The gasification of wood-char spheres in
$CO_2-N_2$ mixtures: analysis and experiments", Chemical Engineering Science, Vol. 49, No. 2, 1994, pp. 223-232, doi: https://doi.org/10.1016/0009-2509(94)80040-5. -
H. Liu, C. Luo, M. Kaneko, S. Kato, and T. Kojima, "Unification of Gasification Kinetics of Char in
$CO_2$ at Elevated Temperatures with a Modified Random Pore Model", Energy Fuels, Vol. 17, No. 4, pp. 961-970, doi: http://dx.doi.org/10.1021/ef020231m. - K. Raghunathan and R. Y. K. Yang, "Unification of Coal Gasification Data and Its Applications", Ind. Eng. Chem. Res., Vol. 28, No. 5, 1989, pp. 518-523, doi: http://dx.doi.org/10.1021/ie00089a003.