DOI QR코드

DOI QR Code

In vitro evaluation of the wear resistance of provisional resin materials fabricated by different methods

제작방법에 따른 임시 수복용 레진의 마모저항성에 관한 연구

  • Ahn, Jong-Ju (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Choi, Jae-Won (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 안종주 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 최재원 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2019.01.21
  • Accepted : 2019.02.14
  • Published : 2019.04.30

Abstract

Purpose: This study was to evaluate the wear resistance of 3D printed, milled, and conventionally cured provisional resin materials. Materials and methods: Four types of resin materials made with different methods were examined: Stereolithography apparatus (SLA) 3D printed resin (S3P), digital light processing (DLP) 3D printed resin (D3P), milled resin (MIL), conventionally self-cured resin (CON). In the 3D printed resin specimens, the build orientation and layer thickness were set to $0^{\circ}$ and $100{\mu}m$, respectively. The specimens were tested in a 2-axis chewing simulator with the steatite as the antagonist under thermocycling condition (5 kg, 30,000 cycles, 0.8 Hz, $5^{\circ}C/55^{\circ}C$). Wear losses of the specimens were calculated using CAD software and scanning electron microscope (SEM) was used to investigate wear surface of the specimens. Statistical significance was determined using One-way ANOVA and Dunnett T3 analysis (${\alpha}=.05$). Results: Wear losses of the S3P, D3P, and MIL groups significantly smaller than those of the CON group (P < .05). There was no significant difference among S3P, D3P, and MIL group (P > .05). In the SEM observations, in the S3P and D3P groups, vertical cracks were observed in the sliding direction of the antagonist. In the MIL group, there was an overall uniform wear surface, whereas in the CON group, a distinct wear track and numerous bubbles were observed. Conclusion: Within the limits of this study, provisional resin materials made with 3D printing show adequate wear resistance for applications in dentistry.

목적: 본 연구의 목적은 적층 가공(additive manufacturing)법, 절삭 가공(subtractive manufacturing)법, 전통적인 방법에 따른 임시 수복용 레진의 마모 저항성을 조사하는 것이다. 재료 및 방법: 제작방법에 따라 4개의 군으로 나누었으며, 각 군은 전용의 임시 수복용 레진을 사용하였다: S3P군, Stereolithography apparatus (SLA) 3D 프린터 및 전용의 광경화성 수지로 제작한 군; D3P군, Digital Light Processing (DLP) 3D 프린터 및 전용의 광경화성 수지로 제작한 군; MIL군, Milling machine 및 밀링용 레진 블록으로 제작한 군; CON군, 전통적인 방법 및 자가중합형 레진으로 제작한 군. 한편, 3D 프린팅된 레진 시편을 제작함에 있어 적층 각도와 층 두께를 각각 $0^{\circ}$$100{\mu}m$로 설정하였다. 구강내 환경을 재현하기 위하여 열순환 처리와 수평, 수직운동이 가능한 2축 chewing simulator를 사용하였으며, 하부에는 한쪽면이 편평하게 제작된 임시 수복용 레진을, 상부에는 끝이 3 mm 직경을 가지는 원뿔형의 steatite를 고정하여 마모시험 진행하였다(5 kg, 30,000회, 0.8 Hz, $5^{\circ}C/55^{\circ}C$). 임시 수복용 레진의 마모량은 마모 전후의 Standard Triangulated Language (STL) 파일과 전용의 CAD software를 이용하여 부피를 계산하였고, 주사전자현미경으로 마모 양상을 비교하였다. 결과: S3P군, D3P군, MIL군의 마모량은 CON군보다 유의하게 작았으며 (P < .05), S3P군, D3P군, MIL군 사이에는 통계학적으로 유의한 차이가 없었다 (P > .05). 주사전자현미경으로 마모면을 관찰한 결과, S3P군과 D3P군에서는 대합치의 운동 방향에 대해 수직적으로 갈라진 흔적이 발견되었다. MIL군에서는 전반적으로 균일한 마모면이 보인 반면, CON군에서는 대합치 운동 방향으로의 뚜렷한 마모 흔적과 다수의 기포가 관찰되었다. 결론: 본 연구의 한계 내에서, 3D 프린팅된 임시 수복용 레진은 치과용으로서 적절한 마모저항성을 보였다.

Keywords

References

  1. Takamizawa T, Barkmeier WW, Tsujimoto A, Scheidel D, Erickson RL, Latta MA, Miyazaki M. Mechanical properties and simulated wear of provisional resin materials. Oper Dent 2015;40:603-13. https://doi.org/10.2341/14-132-L.1
  2. Gough M. A review of temporary crowns and bridges. Dent Update 1994;21:203-7.
  3. Fisher DW, Shillingburg HT Jr, Dewhirst RB. Indirect temporary restorations. J Am Dent Assoc 1971;82:160-3. https://doi.org/10.14219/jada.archive.1971.0019
  4. Melton D, Cobb S, Krell KV. A comparison of two temporary restorations: light-cured resin versus a self-polymerizing temporary restoration. Oral Surg Oral Med Oral Pathol 1990;70:221-5. https://doi.org/10.1016/0030-4220(90)90123-A
  5. Shillingburg HT, Sather DA, Wilson EL, Cain JR, Mitchell DL, Blanco LJ, Kessler JC. Fundamentals of fixed prosthodontics. 4th ed. Chicago; Quintessence Publishing; 2012. p.149-63.
  6. Nigel Tom T, Uthappa MA, Sunny K, Begum F, Nautiyal M, Tamore S. Provisional restorations: An overview of materials used. J Adv Clin Res Insights 2016;3:212-4. https://doi.org/10.15713/ins.jcri.141
  7. van Dijken JW. Direct resin composite inlays/onlays: an 11 year follow-up. J Dent 2000;28:299-306. https://doi.org/10.1016/S0300-5712(00)00010-5
  8. Seo HS, Park JW, Hong SM, Lee SR. Comparative analysis of immediate functional loading and conventional loading about implant survival rate in the completely edentulous: Retrospective study. J Korean Dent Assoc 2014;52:771-82.
  9. Bennani V. Fabrication of an indirect-direct provisional fixed partial denture. J Prosthet Dent 2000;84:364-5. https://doi.org/10.1067/mpr.2000.109126
  10. Song KY, Sorensen JA. Marginal adaptation of new provisional materials for fixed prosthodontics. J Dent Rehabil Appl Sci 1997;13:247-55.
  11. Lee S. Prospect for 3D printing technology in medical, dental, and pediatric dental field. J Korean Acad Pediatr Dent 2016;43:93-108.
  12. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 2006;137:1289-96. https://doi.org/10.14219/jada.archive.2006.0389
  13. Kim SJ, Jo KH, Lee KB. A comparison of the fidelity of various zirconia-based all-ceramic crowns fabricated with CAD/CAM systems. J Korean Acad Prosthodont 2009;47:148-55. https://doi.org/10.4047/jkap.2009.47.2.148
  14. van Noort R. The future of dental devices is digital. Dent Mater 2012;28:3-12. https://doi.org/10.1016/j.dental.2011.10.014
  15. Landers R, Pfister A, Hubner U, John H, Schmelzeisen R, Mulhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002;37:3107-16. https://doi.org/10.1023/A:1016189724389
  16. Barry B. 3-D printing: The new industrial revolution. Business Horizons 2012;55:155-62. https://doi.org/10.1016/j.bushor.2011.11.003
  17. Santosa RE. Provisional restoration options in implant dentistry. Aust Dent J 2007;52:234-42. https://doi.org/10.1111/j.1834-7819.2007.tb00494.x
  18. Givens EJ Jr, Neiva G, Yaman P, Dennison JB. Marginal adaptation and color stability of four provisional materials. J Prosthodont 2008;17:97-101. https://doi.org/10.1111/j.1532-849X.2007.00256.x
  19. Fox CW, Abrams BL, Doukoudakis A. Provisional restorations for altered occlusions. J Prosthet Dent 1984;52:567-72. https://doi.org/10.1016/0022-3913(84)90350-0
  20. Asefi S, Eskandarion S, Hamidiaval S. Fissure sealant materials: Wear resistance of flowable composite resins. J Dent Res Dent Clin Dent Prospects. 2016;10:194-9. https://doi.org/10.15171/joddd.2016.031
  21. Suwannaroop P, Chaijareenont P, Koottathape N, Takahashi H, Arksornnukit M. In vitro wear resistance, hardness and elastic modulus of artificial denture teeth. Dent Mater J 2011;30:461-8. https://doi.org/10.4012/dmj.2010-200
  22. Park JM, Ahn JS, Cha HS, Lee JH. Wear resistance of 3D printing resin material opposing zirconia and metal antagonists. Materials (Basel) 2018;11:1043. https://doi.org/10.3390/ma11061043
  23. Astudillo Rubio D, Delgado Gaete A, Bellot-Arcis C, Montiel-Company JM, Pascual-Moscardo A, Almerich-Silla JM. Mechanical properties of provisional dental materials: A systematic review and meta-analysis. PLoS One 2018;13:e0193162. https://doi.org/10.1371/journal.pone.0193162
  24. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34:192-200. https://doi.org/10.1016/j.dental.2017.10.003
  25. Alharbi N, Osman R, Wismeijer D. Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. J Prosthet Dent 2016;115:760-7. https://doi.org/10.1016/j.prosdent.2015.12.002
  26. Digholkar S, Madhav VN, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc 2016;16:328-34. https://doi.org/10.4103/0972-4052.191288
  27. Alharbi N, Osman RB, Wismeijer D. Factors influencing the dimensional accuracy of 3D-printed full-coverage dental restorations using stereolithography technology. Int J Prosthodont 2016;29:503-10. https://doi.org/10.11607/ijp.4835
  28. Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G. Quantitative in vivo wear of human enamel. J Dent Res 1989;68:1752-4. https://doi.org/10.1177/00220345890680120601
  29. Yi HJ, Jeon YC, Jeong CM, Jeong HC. An in-vitro wear study of indirect composite resins against human enamel. J Korean Acad Prosthodont 2007;45:611-20.
  30. Kern M, Strub JR, Lu XY. Wear of composite resin veneering materials in a dual-axis chewing simulator. J Oral Rehabil 1999;26:372-8. https://doi.org/10.1046/j.1365-2842.1999.00416.x
  31. Heintze SD, Zappini G, Rousson V. Wear of ten dental restorative materials in five wear simulators--results of a round robin test. Dent Mater 2005;21:304-17. https://doi.org/10.1016/j.dental.2004.05.003
  32. DeLong R, Sakaguchi RL, Douglas WH, Pintado MR. The wear of dental amalgam in an artificial mouth: a clinical correlation. Dent Mater 1985;1:238-42. https://doi.org/10.1016/S0109-5641(85)80050-6
  33. Alt V, Hannig M, Wostmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 2011;27:339-47. https://doi.org/10.1016/j.dental.2010.11.012
  34. Albashaireh ZS, Ghazal M, Kern M. Two-body wear of different ceramic materials opposed to zirconia ceramic. J Prosthet Dent 2010;104:105-13. https://doi.org/10.1016/S0022-3913(10)60102-3
  35. Chadwick RG. Thermocycling-the effects upon the compressive strength and abrasion resistance of three composite resins. J Oral Rehabil 1994;21:533-43. https://doi.org/10.1111/j.1365-2842.1994.tb01167.x
  36. Mair LH, Stolarski TA, Vowles RW, Lloyd CH. Wear: mechanisms, manifestations and measurement. Report of a workshop. J Dent 1996;24:141-8. https://doi.org/10.1016/0300-5712(95)00043-7
  37. Bae EJ, Jeong ID, Kim WC, Kim JH. A comparative study of additive and subtractive manufacturing for dental restorations. J Prosthet Dent 2017;118:187-93. https://doi.org/10.1016/j.prosdent.2016.11.004
  38. Park C, Kim MH, Go JS, Hong SM, Shin BS. A study on the comparison mechanical properties of 3D printing prototypes with laminating direction. J Korean Soc Manuf Technol Eng 2015;24:334-41. https://doi.org/10.7735/ksmte.2015.24.3.334

Cited by

  1. 절삭 및 적층 가공법으로 제작된 3본 고정성 국소의치의 변연 및 내면 적합도에 관한 연구 vol.58, pp.1, 2020, https://doi.org/10.4047/jkap.2020.58.1.7
  2. Flabby tissue 환자에서 기능과 안정을 고려한 편악 총의치 수복 증례 vol.59, pp.4, 2019, https://doi.org/10.4047/jkap.2021.59.4.422