Fig. 1. The antiproliferative activity of SCF4 on HUVECs.
Fig. 2. The effect of SCF4 on angiogenesis in vitro.
Fig. 3. The effect of SCF4 on angiogenesis in vivo.
Fig. 4. The effect of SCF4 on VEGFR2-dependent signal transduction in HUVECs.
참고문헌
- Avramis IA, Kwock R, Avramis VI. Taxotere and vincristine inhibit the secretion of the angiogenesis inducing vascular endothelial growth factor (VEGF) by wild-type and drug-resistant human leukemia T-cell lines. Anticancer Res. 21: 2281-2286 (2001)
- Carmeliet P. Angiogenesis in life, disease and medicine. Nature 438: 932-936 (2005) https://doi.org/10.1038/nature04478
- Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 407: 249-257 (2000) https://doi.org/10.1038/35025220
- Clements MK, Jones CB, Cumming M, Daoud SS. Antiangiogenic potential of camptothecin and topotecan. Cancer Chemoth. Pharm. 44: 411-416 (1999) https://doi.org/10.1007/s002800050997
- Coultas L, Chawengsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature 438: 937-945 (2005) https://doi.org/10.1038/nature04479
- de Falco S. Antiangiogenesis therapy: an update after the first decade. Korean J. Intern. Med. 29: 1-11 (2014) https://doi.org/10.3904/kjim.2014.29.1.1
-
Du J, Xu R, Hu Z, Tian Y, Zhu Y, Gu L, Zhou L. PI3K and ERKinduced Rac1 activation mediates hypoxia-induced HIF-1
${\alpha}$ expression in MCF-7 breast cancer cells. PLoS One 6: e25213 (2011) https://doi.org/10.1371/journal.pone.0025213 - Fan TP, Yeh JC, Leung KW, Yue PY, Wong RN. Angiogenesis: From plants to blood vessels. Trends Pharmacol. Sci. 27: 297-309 (2006) https://doi.org/10.1016/j.tips.2006.04.006
- Gerber HP, Mc Murtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J. Biol. Chem. 273: 30336-30343 (1998) https://doi.org/10.1074/jbc.273.46.30336
- Han JM, Kwon HJ, Jung HJ. Tricin, 4',5,7-trihydroxy-3',5'-dimethoxyflavone, exhibits potent antiangiogenic activity in vitro. Int. J. Oncol. 49: 1497-1504 (2016) https://doi.org/10.3892/ijo.2016.3645
-
Han JM, Lee EK, Gong SY, Sohng JK, Kang YJ, Jung HJ. Sparassis crispa exerts anti-inflammatory activity via suppression of TLRmediated NF-
${\kappa}$ B and MAPK signaling pathways in LPS-induced RAW264.7 macrophage cells. J. Ethnopharmacol. 231: 10-18 (2019) https://doi.org/10.1016/j.jep.2018.11.003 -
Han JM, Lim HN, Jung HJ. Hovenia dulcis Thunb. and its active compound ampelopsin inhibit angiogenesis through suppression of VEGFR2 signaling and HIF-
$1{\alpha}$ expression. Oncol. Rep. 38: 3430-3438 (2017) https://doi.org/10.3892/or.2017.6021 - Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23: 1011-1027 (2005) https://doi.org/10.1200/JCO.2005.06.081
-
Hida TH, Kawaminami H, Ishibashi K, Miura NN, Adachi Y, Ohno N. Oral administration of soluble
${\beta}$ -glucan preparation from the cauliflower mushroom, Sparassis crispa (Higher Basidiomycetes) modulated cytokine production in mice. Int. J. Med. Mushrooms 15: 525-538 (2013) https://doi.org/10.1615/IntJMedMushr.v15.i6.20 - Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell. Signal. 19: 2003-2012 (2007) https://doi.org/10.1016/j.cellsig.2007.05.013
- Hong KB, Hong SY, Joung EY, Kim BH, Bae SH, Park Y, Suh HJ. Hypocholesterolemic effects of the cauliflower culinary-medicinal mushroom, Sparassis crispa (Higher Basidiomycetes), in dietinduced hypercholesterolemic rats. Int. J. Med. Mushrooms 17: 965-975 (2015) https://doi.org/10.1615/IntJMedMushrooms.v17.i10.60
- Jing Y, Liu LZ, Jiang Y, Zhu Y, Guo NL, Bamett J, Rojanasakul Y, Agani F, Jiang BH. Cadmium increases HIF-1 and VEGF expression through ROS, ERK, and AKT signaling pathways and induces malignant transformation of human bronchial epithelial cells. Toxicol. Sci. 125: 10-19 (2012) https://doi.org/10.1093/toxsci/kfr256
- Kim HH, Lee S, Singh TS, Choi JK, Shin TY, Kim SH. Sparassis crispa suppresses mast cell-mediated allergic inflammation: role of calcium, mitogen-activated protein kinase and nuclear factor-Kb. Int. J. Mol. Med. 30: 344-350 (2012) https://doi.org/10.3892/ijmm.2012.1000
- Kimura T. Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. Biomed. Res. Int. 2013: 982317 (2013) https://doi.org/10.1155/2013/982317
- Ohno N, Miura NN, Nakajima M, Yadomae T. Antitumor 1,3-betaglucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23: 866-872 (2000) https://doi.org/10.1248/bpb.23.866
- Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G. The Vascular Endothelium and Human Diseases. Int. J. Biol. Sci. 9: 1057-1069 (2013) https://doi.org/10.7150/ijbs.7502
- Shi YH, Wang YX, Bingle L, Gong LH, Heng WJ, Li Y, Fang WG. In vitro study of HIF-1 activation and VEGF release by bFGF in the T47D breast cancer cell line under normotoxic conditions: involvement of PI-3K/Akt and MEK1/ERK pathways. J. Pathol. 205: 530-536 (2005) https://doi.org/10.1002/path.1734
- Vincent L, Kermani P, Young LM, Cheng J, Zhang F, Shido K, Lam G, Bompais-Vincent H, Zhu Z, Hicklin DJ, Bohlen P, Chaplin DJ, May C, Rafii S. Combretastatin A4 phosphate induces rapid regression of tumor neovessels and growth through interference with vascular endothelial-cadherin signaling. J. Clin. Invest. 115: 2992-3006 (2005) https://doi.org/10.1172/JCI24586
- Yamamoto K., Kimura T. Orally and topically administered Sparassis crispa (Hanabiratake) improved healing of skin wounds in mice with streptozotocin-induced diabetes. Biosci. Biotechnol. Biochem. 77: 1303-1305 (2013) https://doi.org/10.1271/bbb.121016
- Yamamoto K, Kimura T, Sugitachi A, Matsuura N. Anti-angiogenic and anti-metastatic effects of beta-1,3-D-glucan purified from Hanabiratake, Sparassis crispa. Biol. Pharm. Bull. 32: 259-263 (2009) https://doi.org/10.1248/bpb.32.259
-
Yoshida M, Hida TH, Takeshita K, Tsuboi M, Kanamori M, Akachi N, Miura NN, Adachi Y, Ohno N. Effect of Sasa veitchii extract on immunostimulating activity of
${\beta}$ -glucan (SCG) from culinarymedicinal mushroom Sparassis crispa Wulf.:Fr. (higher Basidiomycetes). Int. J. Med. Mushrooms 14: 537-547 (2012) https://doi.org/10.1615/IntJMedMushr.v14.i6.10