DOI QR코드

DOI QR Code

Comparison of Sensing Ability of Extraordinary Optical Transmission Sensor for Diverse Configurations of Substrate Hole Array

다양한 홀 어레이 기판에서 측정한 특이 광 투과 센서의 센싱 성능 비교

  • Lee, Yeji (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Song, Hyerin (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Ahn, Heesang (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Kyujung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 이예지 (부산대학교 인지메카트로닉스공학과) ;
  • 송혜린 (부산대학교 인지메카트로닉스공학과) ;
  • 안희상 (부산대학교 인지메카트로닉스공학과) ;
  • 김규정 (부산대학교 인지메카트로닉스공학과)
  • Received : 2018.12.03
  • Accepted : 2019.01.31
  • Published : 2019.04.25

Abstract

In this paper, we investigated the sensing ability of an extraordinary optical transmission sensor, which is based on the diverse configurations of highly ordered structures. The diverse nanostructures of subwavelength hole array were designed to have different periods and lattice configurations of the array. To verify the sensing ability of the sensor, we measured the transmittance spectra of samples (n = 1.333, 1.363) for diverse configurations of substrates. The measured transmittance spectra of diverse materials with different refractive indices show that the sensitivity increased as the period of the structures increased. Also, improved sensing performance of the sensor was achieved for the square array, compared to the hexagonal array.

본 논문에서는 다양한 배열을 가지는 기판에서의 특이 광 투과 센서 시스템의 센싱 성능을 조사하였다. 보조파장 홀 어레이 구조는 어레이의 주기와 격자 배열을 달리하여 제작하였고, 특이 광 투과 센서 시스템으로 제작한 기판에서의 투과 스펙트럼을 측정하였다. 굴절률이 다른 유전물질을 이용하여 투과 스펙트럼을 관찰한 결과 어레이의 주기가 증가할수록 센서의 민감도가 높아짐을 보았다. 또한 육각형 어레이에서 측정한 결과와 비교하였을 때 정사각형 어레이에서 센서의 성능이 향상됨을 입증하였다.

Keywords

KGHHBU_2019_v30n2_67_f0001.png 이미지

Fig. 1. The schematic image of sensor system using the extraordinary optical transmission phenomenon through the array of subwavelength holes (Light source; White light, LS; Lens, PL; Polarizer, MR; Mirror).

KGHHBU_2019_v30n2_67_f0002.png 이미지

Fig. 3. Transmittance spectra through the subwavelength hole array. (a) Square array of 450 nm period, (b) 550 nm period, (c) 650 nm period. (d) Hexagonal array of 450 nm period, (b) 550 nm period, (c) 650 nm period. The inset is an SEM image of the subwavelength hole array and the scale bar is 500 nm.

KGHHBU_2019_v30n2_67_f0003.png 이미지

Fig. 4. Calculated transmittance spectra through the nanohole square array with 250 nm-diameter when the refractive index is changed from 1.3 to 1.4. (a) The period is 450 nm. The inset is the near-field distribution through the hole arrays formed by the normally incident 700 nm wavelength light. The scale bar is 50 nm. (b) The period is 650 nm. The black and red curves correspond to water and ethanol, respectively.

KGHHBU_2019_v30n2_67_f0004.png 이미지

Fig. 2. (a) Fabrication process of the subwavelength hole array. The schematic image of (b) hexagonal and (c) rectangular subwavelength hole array with desired condition; D (diameter of hole): 250 nm, P (period of array): 450 nm, 550 nm, 650 nm.

KGHHBU_2019_v30n2_67_f0005.png 이미지

Fig. 5. (a) Peak shifts measured for a change in refractive index (led line; square array, blue line; hexagonal array, solid line; 450 nm period, dashed line; 550 nm period, dot line; 650 nm period). (b) Calculated sensitivity of transmittance spectra through the 250 nm-diameter nanohole array with 450 nm-period.

Table 1. Sensitivity of diverse nanostructures

KGHHBU_2019_v30n2_67_t0001.png 이미지

References

  1. H. A. Bethe, "Theory of diffraction by small holes," Phys. Rev. 66, 163 (1944). https://doi.org/10.1103/PhysRev.66.163
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). https://doi.org/10.1038/35570
  3. S. H. Chang, S. K. Gray, and G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films," Opt. Express 13, 3150-3163 (2005). https://doi.org/10.1364/OPEX.13.003150
  4. A. Peer and R. Biswas, "Extraordinary optical transmission in nanopatterned ultrathin metal films without holes," Nanoscale 8, 4657-4666 (2016). https://doi.org/10.1039/C5NR07903A
  5. J. R. Choi, K. Kim, Y. Oh, A. L. Kim, S. Y. Kim, J. S. Shin, and D. Kim, "Extraordinary transmission-based plasmonic nanoarrays for axially super-resolved cell imaging," Adv. Opt. Mater. 2, 48-55 (2014). https://doi.org/10.1002/adom.201300330
  6. M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, "Sub-diffraction-limited patterning using evanescent nearfield optical lithography," Appl. Phys. Lett. 75, 3560-3562 (1999). https://doi.org/10.1063/1.125388
  7. W. Yue, Z. Wang, Y. Yang, J. Li, Y. Wu, L. Chen, B. Ooi, X. Wang, and X.-X. Zhanget, "Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications," Nanoscale 6, 7917-7923 (2014). https://doi.org/10.1039/c4nr01001a
  8. E. N. Economou, "Surface plasmons in thin films," Phys. Rev. 182, 539 (1969). https://doi.org/10.1103/PhysRev.182.539
  9. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phys. Lett. 81, 1762-1764 (2002). https://doi.org/10.1063/1.1506018
  10. X. Zhang, G. Liu, Z. Liu, Y. Hu, Z. Cai, X. Liu, and M. Liu, "Near-field plasmon effects in extraordinary optical transmission through periodic triangular hole arrays," Opt. Eng. 53, 107108 (2014). https://doi.org/10.1117/1.OE.53.10.107108
  11. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, "A new generation of sensors based on extraordinary optical transmission," Acc. Chem. Res. 41, 1049-1057 (2008). https://doi.org/10.1021/ar800074d
  12. A. V. Zayats and I. I. Smolyaninov, "Near-field photonics: surface plasmon polaritons and localized surface plasmons," J. Opt. A: Pure Appl. Opt. 5, S16 (2003). https://doi.org/10.1088/1464-4258/5/4/353
  13. G. D. Qing, S. Krishnan, P. Z. Li, V. D. Hilmi, H. K. Chan, and W. S. Xiao, "A two-dimensional nanopatterned thin metallic transparent conductor with high transparency from the ultraviolet to the infrared," Appl. Phys. Lett. 101, 181112 (2012). https://doi.org/10.1063/1.4765341
  14. S. A. Darmanyan and A. V. Zayats, "Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films: an analytical study," Phys. Rev. B 67, 035424 (2003). https://doi.org/10.1103/PhysRevB.67.035424
  15. Y. Wang, Y. Qin, and Z. Zhang, "Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays," Plasmonics 9, 203-207 (2014). https://doi.org/10.1007/s11468-013-9613-z
  16. M. Irannejad and B. Cui, "Effects of refractive index variations on the optical transmittance spectral properties of the nano-hole arrays," Plasmonics 8, 1245-1251 (2013). https://doi.org/10.1007/s11468-013-9540-z
  17. Z. Marcet, Z. H. Hang, C. T. Chan, I. Kravchenko, J. E. Bower, R. A. Cirelli, and H. B. Chan, "Optical transmission through double-layer, laterally shifted metallic subwavelength hole arrays," Opt. Lett. 35, 2124-2126 (2010). https://doi.org/10.1364/OL.35.002124
  18. X. Zhang, Z. Li, S. Ye, S. Wu, J. Zhang, L. Cui, and B. Yang, "Elevated Ag nanohole arrays for high performance plasmonic sensors based on extraordinary optical transmission," J. Mater. Chem. 22, 8903-8910 (2012). https://doi.org/10.1039/c2jm30525a
  19. F. Watt, A. A. Bettiol, J. A. Van Kan, E. J. Teo, and M. B. H. Breese, "Ion beam lithography and nanofabrication: a review," Int. J. Nanosci. 4, 269-286 (2005). https://doi.org/10.1142/S0219581X05003139
  20. N. Feth, C. Enkrich, M. Wegener, and S. Linden, "Large-area magnetic metamaterials via compact interference lithography," Opt. Express 15, 501-507 (2007). https://doi.org/10.1364/OE.15.000501
  21. Q. J. Wang, J. Q. Li, C. P. Huang, C. Zhang, and Y. Y. Zhu, "Enhanced optical transmission through metal films with rotation-symmetrical hole arrays," Appl. Phys. Lett. 87, 091105 (2005). https://doi.org/10.1063/1.2034120
  22. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, "Surface-plasmon-enhanced transmission through hole arrays in Cr films," J. Opt. Soc. Am. B 16, 1743-1748 (1999). https://doi.org/10.1364/JOSAB.16.001743
  23. Y. Eksioglu, A. E. Cetin, and J. Petracek, "Optical response of plasmonic nanohole arrays: comparison of square and hexagonal lattices," Plasmonics 11, 851-856 (2016). https://doi.org/10.1007/s11468-015-0118-9
  24. A. E. Cetin, M. Drsata, Y. Eksioglu, and J. Petracek, "Effect of lattice geometry on optical transmission through subwavelength nanohole arrays," in Proc. 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS) (Greece, Sept. 2016), pp. 280-282.
  25. A. Degiron and T. W. Ebbesen, "The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures," J. Opt. A: Pure Appl. Opt. 7, S90 (2005). https://doi.org/10.1088/1464-4258/7/2/012
  26. B. K. Singh and A. C. Hillier, "Surface plasmon resonance enhanced transmission of light through gold-coated diffraction gratings," Anal. Chem. 80, 3803-3810 (2008). https://doi.org/10.1021/ac800045a
  27. J. A. Jackman, A. R. Ferhan, and N. J. Cho, "Nanoplasmonic sensors for biointerfacial science," Chem. Soc. Rev. 46, 3615-3660 (2017). https://doi.org/10.1039/C6CS00494F