Table 1. The study of sentiment analysis using ensemble technique
Table 2. Analysis result of Normal review
Table 3. Analysis result of Normal review + Summary review
References
- G. Kim & H. Koo. (2016). The causal relationship between risk and trust in the online marketplace: A bidirectional perspective. Computers in Human Behavior, 55, 1020-1029. DOI : 10.1016/j.chb.2015.11.005
- P. A. Pavlou & D. Gefen. (2004). Building effective online marketplaces with institution-based trust. Information systems research, 15(1), 37-59. DOI : 10.1287/isre.1040.0015
- W. Fan, L. Wallace, S. Rich & Z. Zhang. (2006). Tapping the power of text mining. Communications of the ACM, 49(9), 76-82. DOI : 10.1145/1151030.1151032
- D. Paranyushkin. (2011). Identifying the pathways for meaning circulation using text network analysis. Berlin: Nodus Labs.
- J. H. Ryu & Y. Y. You. (2018). The Fourth Industrial Revolution Core Technology Association Analysis Using Text Mining. Journal of Digital Convergence, 16(8), 129-136. DOI : 10.14400/JDC.2018.16.8.129
- J. H. Bae, J. E. Son & M. Song. (2013). Analysis of twitter for 2012 South Korea presidential election by text mining techniques. Journal of Intelligence and Information Systems, 19, 141-156. DOI : 10.13088/jiis.2013.19.3.141
- D. Y. Lee, J. C. Jo & H. S. Lim. (2017). User Sentiment Analysis on Amazon Fashion Product Review Using Word Embedding. Journal of the Korea Convergence Society, 8(1), 11. DOI : 10.15207/JKCS.2017.8.4.001
- E. Y. Kim & E. J. Ko. (2018). Monitoring Mood Trends of Twitter Users using Multi-modal Anal ysis method of Texts and Images. Journal of the Korea Convergence Society, 9(1), 419-431. DOI : 10.15207/JKCS.2018.9.1.419
- L. Rokach. (2010). Pattern classification using ensemble methods. World Scientific.
- G. Wang, J. Sun, J. Ma, K. Xu & J. Gu. (2014). Sentiment classification: The contribution of ensemble learning. Decision support systems, 57, 77-93. DOI : 10.1016/j.dss.2013.08.002
- N. F. F. Da Silva, E. R. Hruschkaa & E. R. Hruschka. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 66, 170-179. DOI : 10.1016/j.dss.2014.07.003
- C. Catal & M. Nangir. (2017). A sentiment classification model based on multiple classifiers. Applied Soft Computing, 50, 135-141. DOI : 10.1016/j.asoc.2016.11.022
- T. Chalothom & J. Ellman. (2015). Simple approaches of sentiment analysis via ensemble learning. In information science and applications. (pp. 631-639). Berlin, Heidelberg.
- E. Fersini, E. Messina & F. A. Pozzi. (2014). Sentiment analysis: Bayesian ensemble learning. Decision support systems, 68, 26-38. DOI : 10.1016/j.dss.2014.10.004
- A. Hassan, A. Abbasi & D. Zeng. (2013). Twitter sentiment analysis: A bootstrap ensemble framework. In Social Computing. (pp. 8-14). Alexandria. USA.
- C. Rodriguez-Penagos, J. A. Batalla, J. Codina-Filba, D. Garcia-Narbona, J. Grivolla, P. Lambert & R. Sauri. (2013). FBM: Combining lexicon-based ML and heuristics for Social Media Polarities. In Second Joint Conference on Lexical and Computational Semantics (*SEM). Proceedings of the Seventh International Workshop on Semantic Evaluation. (pp. 483-489) Atlanta. Georgia.
- Y. Su, Y. Zhang, D. Ji, Y. Wang & H. Wu. (2012). Ensemble learning for sentiment classification. In Workshop on Chinese Lexical Semantics. (pp. 84-93). July, Berlin, Heidelberg.