DOI QR코드

DOI QR Code

CFPR을 이용한 선사 및 화주 상생을 위한 정책지원방안 도출에 관한 연구

An Analysis of Drawing Government Supporting Policies for Mutual Growth of Shippers and Ship owners using CFPR method

  • 남태현 (인천대학교 동북아물류대학원) ;
  • 여기태 (인천대학교 동북아물류대학원)
  • Nam, Tae-Hyun (Graduate School of Logistics, Incheon National University) ;
  • Yeo, Gi-Tae (Graduate School of Logistics, Incheon National University)
  • 투고 : 2019.01.22
  • 심사 : 2019.04.20
  • 발행 : 2019.04.28

초록

해운경기 침체를 극복하지 못한 기업경영의 실패는 해운산업과 관련된 전후방산업 전반에 부정적인 영향을 미친다. 본 연구에서는 선사, 화주, 항만 관련 기관들을 대상으로 전문가 조사를 실시하여, 선사 및 화주 상생을 위한 정부의 정책지원 방안을 도출하는 것을 연구의 목적으로 한다. CFPR(Consistent Fuzzy Preference Relation)을 연구방법으로 사용하여 정부정책 우선순위를 제시한다. 연구결과 전체 14개 정책 가운데 "화주의 선사 또는 선박 지분 참여 확대 (0.102)"가 가장 높은 순위를 보였고, 다음으로 "국내 화주 중심의 서비스 품질 강화(0.101)", "컨테이너 화물 장기 운송계약 모델 마련(0.085)"등을 중요하게 인식하는 것으로 나타났다. 선주 및 화주 상생을 통한 한국해운의 회생을 위해서는 올바른 정부정책수립 및 우선순위 선정을 통한 정책집행이 중요한데, 본 연구를 통하여 정책과 우선순위를 제시한 점에 기여도가 있다. 향후 연구에서는 해운산업 이해 집단 간 인식차이를 비교한 구체적인 분석이 필요하다.

The failure of company management that does not overcome the recession of shipping economy has negative impact on front-end and back-end industries in relation to shipping industry overall. This study aims to derive a measure of government policy support for win-win of ship owners and shippers by performing a survey with experts in ship owners, shippers, and port-related institutions. This study employed a consistent fuzzy preference relation (CFPR) method to provide the priority of government policies. The study results showed that out of all 14 policies, the policy perceived most important was "expansion of participation in share of shipping company or ships of shipper (0.102)" followed by "strengthening of national shipper-centered service quality (0.101)", and "providing a long-term transportation contract model of container cargo (0.085)". To recover the Korean shipping industry via win-win of ship owners and shipper, the policy enforcement is important through correct government policy establishment and priority selection. In this regard, this study contributed to proposing policies and priority of the policies. For the future study, detailed analysis on comparison of perception difference among stakeholders in the shipping industry is needed.

키워드

DJTJBT_2019_v17n4_95_f0001.png 이미지

Fig. 1. Weights of principal factors

DJTJBT_2019_v17n4_95_f0002.png 이미지

Fig. 2. Weights of cost factors

DJTJBT_2019_v17n4_95_f0003.png 이미지

Fig. 3. Weights of service factors

DJTJBT_2019_v17n4_95_f0004.png 이미지

Fig. 4. Weights of norm factors

DJTJBT_2019_v17n4_95_f0005.png 이미지

Fig. 5. Weights of Shipping company-shipper cooperation

Table 1. Cargo turnover rate of domestic container carriers

DJTJBT_2019_v17n4_95_t0001.png 이미지

Table 2. Annual shipping shippers of Hanjin Shipping in 2015

DJTJBT_2019_v17n4_95_t0002.png 이미지

Table 4. Evaluation factor

DJTJBT_2019_v17n4_95_t0003.png 이미지

Table 3. Questionnaire respondent base statistical table

DJTJBT_2019_v17n4_95_t0004.png 이미지

Table 5. The results of CFPR method

DJTJBT_2019_v17n4_95_t0005.png 이미지

참고문헌

  1. H. Leggate & J. McConville. (2005). Tonnage tax: Is it working? Maritime Policy & Management, 32(2), 177-189. https://doi.org/10.1080/03088830500083547
  2. A. H. Alizadeh & N. K. Nomikos. (2007). Investment timing and trading strategies in the sale and purchase market for ships. Transportation Research Part B, 41, 126-143. https://doi.org/10.1016/j.trb.2006.04.002
  3. J. J. NG & T. L. YIP. (2010). Paradigm shifts in shipping industry policy led to revitalization - Hong Kong case. The Asian Journal of Shipping and Logistics, 26(1), 153-180. https://doi.org/10.1016/S2092-5212(10)80016-1
  4. K. H. Lee & Y. J. Du. (2008). A Study of the Development Policies of the Korean SIC. The Journal of Shipping and Logistics, 59, 123-153.
  5. Y. T. Park. (2018). Strengthening competitiveness of Korea's shipping industry. Conference of East and Central Asia Economics and Business Association, (pp. 249-256). Seoul.
  6. H. H. Lee. (1996), An empirical study on the determinants of competitive advantage in Korean shipping companies. Shipping Logistics Research, 22, 15-61.
  7. S. J. Sim. (2005). Enhancing competitiveness of Korean shipping service industry, Journal of Industrial Studies, 18, 1-19.
  8. T. Y. Pham & G. T. Yeo. (2018). A comparative analysis selecting the transport routes of electronics components from China to Vietnam, Sustainability, 10(7), 2444. doi:10.3390/su10072444
  9. F. Herrera, E. Viedma & L. Martinez. (2008). A fuzzy linguistic methodology to meal with mnbalanced linguistic term sets, IEEE Transactions on Fuzzy Systems, 16(2), 354-370. https://doi.org/10.1109/TFUZZ.2007.896353
  10. X. Deng, X. Lu, F. T. Chan, R. Sadiq, S. Mahadevan & Y. Deng. (2015). D-CFPR : D numbers extended consistent fuzzy preference relations, Knowledge-Based systems, 73, 61-68. https://doi.org/10.1016/j.knosys.2014.09.007
  11. O. Norojono & W. Young. (2003). A stated preference freight mode choice model, Transportation Planning and Technology, 26(2), 195-212.
  12. E. H. Viedma, F. Herrera, F. Chiclana & M. Luque. (2004). Some issue on consistency of fuzzy preference relations. European Journal of Operational Research, 154, 98-109. https://doi.org/10.1016/S0377-2217(02)00725-7
  13. T. C. Wang & Y. H. Chen. (2007). Applying consistent fuzzy preference relations to partnership selection. Omega, 35, 384-388. https://doi.org/10.1016/j.omega.2005.07.007
  14. T. H. Chan & T. C. Wang. (2009). Measuring the success possibility of implementing advanced manufacturing technology by utilizing the consistent fuzzy preference relations. Expert Systems with Applications, 36, 4313-4320. https://doi.org/10.1016/j.eswa.2008.03.019
  15. T. C. Wang & T. H. Chang. (2007). Forecasting the probability of successful knowledge management by consistent fuzzy preference relations. Expert Systems with Applications, 32, 801-813. https://doi.org/10.1016/j.eswa.2006.01.021
  16. V. L. Dang & G. T. Yeo. (2018). Weighing the key factors to improve Vietnam's Logistics system. Asian Journal of Shipping and Logistics, 34(4), 308-316. https://doi.org/10.1016/j.ajsl.2018.12.004
  17. T. Y. Pham, K. Y. Kim & G. T. Yeo. (2018). The Panama canal expansion and its impact on East-West liner shipping route selection. Sustainability, 10, 4353. doi:10.3390/su10124353
  18. J. M. Park, T. H. Yang, S. H. Park & G. T. Yeo. (2018). A study on the operational activation strategies of Gyeongin Port using Fuzzy-IPA, Journal of Digital Convergence, 16(10), 169-178. https://doi.org/10.14400/JDC.2018.16.10.169