DOI QR코드

DOI QR Code

Chlorophyll a Fluorescence Parameters of Hulled and Hull-less Barley (Hordeum vulgare L.) DH Lines Inoculated with Fusarium culmorum

  • Warzecha, Tomasz (University of Agriculture in Krakow, Department of Plant Breeding and Seed Science) ;
  • Skrzypek, Edyta (Polish Academy of Sciences, The Franciszek Gorski Institute of Plant Physiology) ;
  • Adamski, Tadeusz (Institute of Plant Genetics, Polish Academy of Sciences) ;
  • Surma, Maria (Institute of Plant Genetics, Polish Academy of Sciences) ;
  • Kaczmarek, Zygmunt (Institute of Plant Genetics, Polish Academy of Sciences) ;
  • Sutkowska, Agnieszka (University of Agriculture in Krakow, Department of Plant Breeding and Seed Science)
  • Received : 2018.07.04
  • Accepted : 2019.02.12
  • Published : 2019.04.01

Abstract

Barley worldwide is affected seriously by Fusarium seedling blight (FSB) and Fusarium head blight (FHB) diseases caused by the Fusarium species. The objective of this study was to facilitate the resistance of hulled and hull-less barley at different growth stages to F. culmorum according to direct parameters: disease rating (DR), fresh weight of leaves and roots, kernel weight per spike, kernel number per spike, plump kernels, and indirect parameters - chlorophyll a fluorescence (CF). Plate assay, greenhouse and field tests were performed on 30 spring barley doubled haploid (DH) lines and their parents infected with Fusarium culmorum. Direct parameters proved that hulled genotypes show less symptoms. Most studied chlorophyll a fluorescence (CF) parameters (apart from DIo/CS - amount of energy dissipated from PSII for laboratory test, TRo/CS - amount of excitation energy trapped in PSII reaction centers, ETo/CS - amount of energy used for electron transport and RC/CS - number of active reaction centres in the state of fully reduced PSII reaction center in field experiment) were significantly affected by F. culmorum infection. In all experiments, hulled genotypes had higher values of CF parameters compared to hull-less ones. Significant correlations were detected between direct and indirect parameters and also between various environments. It was revealed that ABS/CS, TRo/CS, and RC/CS have significant positive correlation in greenhouse test and field experiment. Significant correlations suggest the possibility of applying the CF parameters in selection of barley DH lines resistant to F. culmorum infection.

Keywords

Table 1. Mean values ± SE of chlorophyll a fluorescence (CF) parameters and direct parameters (DR – disease rating, FW – fresh weigh of leaves [mg] and yield-related traits) of inoculated and control barley DH lines measured at different tests

E1PPBG_2019_v35n2_112_t0008.png 이미지

Table 2. F-statistic from analysis of variance for chlorophyll a fluorescence (CF) parameters and direct parameters (DR – disease rating, FW – fresh weigh) of inoculated and control barley DH lines measured at different tests

E1PPBG_2019_v35n2_112_t0009.png 이미지

Table 3. Orthogonal contrasts for chlorophyll a fluorescence (CF) parameters between hulled and hull-less barley DH lines at plate assay, greenhouse and field tests

E1PPBG_2019_v35n2_112_t0010.png 이미지

Table 4. Correlation coefficients between chlorophyll a fluorescence (CF) parameters and disease rating (DR) and fresh weight of leaves and roots in plate assay

E1PPBG_2019_v35n2_112_t0011.png 이미지

Table 5. Correlation coefficients between chlorophyll a fluorescence (CF) parameters and disease rating (DR) and fresh weight of leaves revealed in greenhouse test

E1PPBG_2019_v35n2_112_t0012.png 이미지

Table 6. Correlation coefficients between chlorophyll a fluorescence (CF) parameters and disease rating of heads (DR), number of grains per head (KNS), weight of grains per head (KWS) and kernel diameter: KD1, KD2 and KD3 revealed under field test

E1PPBG_2019_v35n2_112_t0013.png 이미지

Table 7. Correlation coefficients between chlorophyll a fluorescence (CF) parameters measured under plate assay, greenhouse and field tests

E1PPBG_2019_v35n2_112_t0014.png 이미지

References

  1. Adamski, T., Chelkowski, J., Golinski, P., Kaczmarek, Z., Kostecki M., Perkowski, J., Surma, M. and Wisniewska, H. 1999. Yield reduction and mycotoxin accumulation in barley doubled haploids inoculated with Fusarium culmorum (W.G.Sm.) Sacc. J. Appl. Genet. 40:73-84.
  2. Ajigboye, O. O., Murchie, E. H. and Ray, R. V. 2014. Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter wheat. Pestic. Biochem. Physiol. 114:52-60. https://doi.org/10.1016/j.pestbp.2014.07.003
  3. Ajigboye, O. O., Bousquet L., Murchie E. H. and Ray R. V. 2016. Chlorophyll fluorescence parameters allow the rapid detection and differentiation of plant responses in three different wheat pathosystems. Funct. Plant Biol. 43:356-369. https://doi.org/10.1071/FP15280
  4. Arseniuk, E., Goral, T. and Czembor, H. J. 1993. Reaction of triticale, wheat and rye accessions to graminaceous Fusarium spp. infection at the seedling and adult plant growth stages. Euphytica 70:175-183. https://doi.org/10.1007/BF00023757
  5. Arseniuk, E., Foremska, E. and Goral, T. and Chelkowski, J. 1999. Fusarium head blight reactions and accumulation of deoxynivalenol (DON) and some of its derivatives in kernels of wheat. triticale and rye. J. Phytopathol. 147:577-590. https://doi.org/10.1046/j.1439-0434.1999.00433.x
  6. Baker, N. R. and Rosenqvist, E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 5:1607-1621. https://doi.org/10.1093/jxb/erh196
  7. Bauriegel, E., Giebel, A. and Herppich, W. B. 2010. Rapid Fusarium head blight detection on winter wheat ears using chlorophyll fluorescence imaging. J. Appl. Bot. Food Qual. 83:196-203.
  8. Bolhar-Nordenkampf, H. R. and Oquist, G. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In: Photosynthesis and production in a changing environment: a field and laboratory manual, eds. by D. O. Hall, J. M. O. Scurlock, H. R. Bolhar-Nordenkampf, R. C. Leegood and S. P. Long, pp. 193-206. Springer, Dordrecht, The Netherlands.
  9. Bottalico, A. and Perrone, G. 2002. Toxigenic Fusarium species and mycotoxins associated with head blight in small - grain cereals in Europe. Eur. J. Plant Pathol. 108:611-624. https://doi.org/10.1023/A:1020635214971
  10. Buerstmayr, H., Ban, T. and Anderson, J. A. 2009. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed. 128:1-26. https://doi.org/10.1111/j.1439-0523.2008.01550.x
  11. Chelkowski, J. and Manka, M. 1983. The ability of Fusaria pathogenic to wheat, barley and corn to produce zearalenone. J. Phytopathol. 106:354-359. https://doi.org/10.1111/jph.1983.106.4.354
  12. Chelkowski, J., Kaptur, P., Tomkowiak, M., Kostecki M., Golinski P., Ponitka, A., Slusarkiewicz-Jarzina, A. and Bocianowski, J. 2000. Moniliformin accumulation in kernels of triticale accessions inoculated with Fusarium avenaceum in Poland. J. Phytopathol. 148:433-449. https://doi.org/10.1046/j.1439-0434.2000.00538.x
  13. Cowger, C., Patton-Ozkurt, J., Brown-Guedira, G. and Perugini, L. 2009. Post-anthesis moisture increased Fusarium head blight and deoxynivalenol levels in North Carolina winter wheat. Phytopathology 99:320-327. https://doi.org/10.1094/PHYTO-99-4-0320
  14. Czyczylo-Mysza, I., Tyrka, M., Marcinska, I., Skrzypek, E., Karbarz, M., Dziurka, M., Hura, T., Dziurka, K. and Quarrie, S. A. 2013. Quantitative trait loci for leaf chlorophyll fluorescence parameters. chlorophyll and carotenoid contents in relation to biomass and yield in bread wheat and their chromosome deletion bin assignments. Mol. Breed. 32:189-210. https://doi.org/10.1007/s11032-013-9862-8
  15. Demetriou, G., Neonaki, C., Navakoudis, E. and Kotzabasis, K. 2007. Salt stress impact on the molecular structure and function of the photosynthetic apparatus: the protective role of polyamines. Biochim. Biophys. Acta 1767:272-280. https://doi.org/10.1016/j.bbabio.2007.02.020
  16. Desjardins, A. E. 2006. Fusarium mycotoxins. Chemistry, genetics. and biology. APS Press, St. Paul, MN, USA. 260 pp.
  17. Foroud, N. A. and Eudes, F. 2009. Trichothecenes in cereal grains. Int. J. Mol. Sci. 10:147-173. https://doi.org/10.3390/ijms10010147
  18. Fracheboud, Y. and Leipner, J. 2003. The application of chlorophyll fluorescence to study light, temperature and drought stress. In: Practical applications of chlorophyll fluorescence in plant biology, eds. by J. R. DeEll and P. M. A. Tiovonen, pp. 125-150. Springer, Boston, MA, USA.
  19. Gorbe, E. and Calatayud, A. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci. Hortic. 138:24-35. https://doi.org/10.1016/j.scienta.2012.02.002
  20. Grey, W. and Mathre, D. E. 1988. Evaluation of spring barley for reaction to Fusarium seedling blight and root rot. Can. J. Plant Sci. 68:23-30. https://doi.org/10.4141/cjps88-002
  21. Huner, N. P., Oquist, G., Hurry, V. M., Krol, M., Falk, S. and Griffith, M. 1993. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants. Photosynth. Res. 37:19-39. https://doi.org/10.1007/BF02185436
  22. Imathiu, S. M., Hare, M. C., Ray, R. V., Back, M. and Edwards, S. G. 2010. Evaluation of pathogenicity and aggressiveness of F. langsethiae on oat and wheat seedlings relative to known seedling blight pathogens. Eur. J. Plant Pathol. 126:203-216. https://doi.org/10.1007/s10658-009-9533-0
  23. Inch, S. A. and Gilbert, J. 2003. Survival of Gibberella zeae in Fusarium-Damaged wheat kernels. Plant Dis. 83:282-287. https://doi.org/10.1094/PDIS.2003.87.3.282
  24. Kasha, K. J. and Kao, K. N. 1970. High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874-876. https://doi.org/10.1038/225874a0
  25. Ma, H. X., Ge, H. J., Zhang, X., Lu, W. Z., Yu, D. Z., Chen, H. and Chen, J. M. 2009. Resistance to Fusarium head blight and deoxynivalenol accumulation in Chinese barley. J. Phytopathol. 157:166-171. https://doi.org/10.1111/j.1439-0434.2008.01454.x
  26. Magan, N., Hope, R., Colleate, A. and Baxter, E. S. 2002. Relationship between growth and mycotoxin production by Fusarium species. biocides and environment. Eur. J. Plant Pathol. 108:685-690. https://doi.org/10.1023/A:1020618728175
  27. Mardi, M., Pazouki, L., Delavar, H., Kazemi, M. B., Ghareyazie, B., Steiner, B., Nolz, R., Lemmens, M. and Buerstmayr, H. 2006. QTL analysis of resistance to Fusarium head blight in wheat using a 'Frontana'- derived population. Plant Breed. 125:313-317. https://doi.org/10.1111/j.1439-0523.2006.01228.x
  28. Marin, S., Ramos, A. J., Cano-Sancho, G. and Sanchis, V. 2013. Mycotoxins: occurrence, toxicology. and exposure assessment. Food Chem. Toxicol. 60:218-237. https://doi.org/10.1016/j.fct.2013.07.047
  29. Maxwell, K. and Johnson, G. N. 2000. Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51:659-668. https://doi.org/10.1093/jexbot/51.345.659
  30. Mengiste, T. 2012. Plant immunity to necrotrophs. Annu. Rev. Phytopathol. 50:267-294. https://doi.org/10.1146/annurev-phyto-081211-172955
  31. Mesterhazy, A. 1995. Types and components of resistance to Fusarium head blight of wheat. Plant Breed. 114:377-386. https://doi.org/10.1111/j.1439-0523.1995.tb00816.x
  32. Mesterhazy, A. 2002. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur. J. Plant Pathol. 108:675-684. https://doi.org/10.1023/A:1020631114063
  33. Mesterhazy, A., Bartok, T., Mirocha, C. G. and Komoroczy, R. 1999. Nature of wheat resistance to Fusarium head blight and the role of deoxynivalenol for breeding. Plant Breed. 118:97-110. https://doi.org/10.1046/j.1439-0523.1999.118002097.x
  34. Miedaner, T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 116:201-220. https://doi.org/10.1111/j.1439-0523.1997.tb00985.x
  35. Miedaner, T., Reinbrecht, C., Lauber, U., Schollenberger, M. and Geiger, H. H. 2001. Effects of genotype and genotype x environment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breed. 120:97-105. https://doi.org/10.1046/j.1439-0523.2001.00580.x
  36. Nielsen, L. K., Jensen, J. D., Nielson, G. C., Spliid, N. H., Thomsen, I. K., Justesen, A. F., Collinge, D. B. and Jorgensen, L. N. 2011. Fusarium head blight of cereals in Denmark: species complex and related mycotoxins. Phytopathology 101:960-969. https://doi.org/10.1094/PHYTO-07-10-0188
  37. Nielsen, L. K., Justesen, A. F., Jensen, J. D. and Jorgensen, L. N. 2013. Microdochium nivale and Microdochium majus in seed samples of Danish small grain cereals. Crop Prot. 43:192-200. https://doi.org/10.1016/j.cropro.2012.09.002
  38. Nielsen, L. K., Cook, D. J., Edwards, S. G. and Ray, R. V. 2014. The prevalence and impact of Fusarium head blight pathogens and mycotoxins on malting barley quality in UK. Int. J. Food Microbiol. 179:38-49. https://doi.org/10.1016/j.ijfoodmicro.2014.03.023
  39. O'Neill, P. M., Shanahan, J. F. and Schepers, J. S. 2006. Use of chlorophyll fluorescence assessments to differentiate corn hybrid response to variable water conditions. Crop Sci. 46:681-687. https://doi.org/10.2135/cropsci2005.06-0170
  40. Pereira, W. E., de Siqueira, D. L., Martinez, C. A. and Puiatti, M. 2000. Gas exchange and chlorophyll fluorescence in four citrus rootstocks under aluminium stress. J. Plant Physiol. 157:513-520. https://doi.org/10.1016/S0176-1617(00)80106-6
  41. Perfect, S. E. and Green, J. R. 2001. Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol. Plant Pathol. 2:101-108. https://doi.org/10.1046/j.1364-3703.2001.00055.x
  42. Pfannschmidt, T., Allen, J. F. and Oelmuller, R. 2001. Principles of redox control in photosynthesis gene expression. Physiol. Plant. 112:1-9. https://doi.org/10.1034/j.1399-3054.2001.1120101.x
  43. Pickering, R. A. and Devaux, P. 1992. Haploid production: Approaches and use in plant breeding. In: Barley: Genetics. Biochemistry, molecular biology and biotechnology, ed. by P. R. Shewry, pp. 519-547. CAB International, Wallingford, UK.
  44. Pinto, L. S. R. C., Azevedo, J. L., Pereira, J. O., Vieira, M. L. C. and Labate, C. A. 2000. Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. New Phytol. 147:609-615. https://doi.org/10.1046/j.1469-8137.2000.00722.x
  45. Rapacz, M. 1998. The after-effects of temperature and irradiance during early growth of winter oilseed rape (Brassica napus L. var. oleifera cv. Gorczanski) seedlings on the progress of their cold acclimation. Acta Physiol. Plant. 20:73-78. https://doi.org/10.1007/s11738-998-0046-9
  46. Rapacz, M., Waligorski, P. and Janowiak, F. 2003. ABA and gibberellin- like substances during prehardening, cold acclimation, de- and reacclimation of oilseed rape. Acta Physiol. Plant. 25:151-161. https://doi.org/10.1007/s11738-003-0048-6
  47. Ren, R., Yang X. and Ray, R. V. 2015. Comparative aggressiveness of Microdochium nivale and M. majus and evaluation of screening methods for Fusarium seedling blight resistance in wheat cultivars. Eur. J. Plant Pathol. 141:281-294. https://doi.org/10.1007/s10658-014-0541-3
  48. Rolfe, S. A. and Scholes, J. D. 2010. Chlorophyll fluorescence imaging of plant pathogen interactions. Protoplasma 247:163-175. https://doi.org/10.1007/s00709-010-0203-z
  49. Schroeder, H. W. and Christiansen, J. J. 1963. Factors affecting resistance of wheat to scab caused by Gibberella zeae. Phytopathology 53:831-838.
  50. Smillie, R. M. and Nott, R. 1982. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo. Plant Physiol. 70:1049-1054. https://doi.org/10.1104/pp.70.4.1049
  51. Snijders, C. H. 2004. Resistance in wheat to Fusarium infection and trichothecene formation. Toxicol. Lett. 153:37-46. https://doi.org/10.1016/j.toxlet.2004.04.044
  52. Strasser, B. J. and Strasser, R. J. 1995. Measuring fast fluorescence transients to address environmental questions: the JIP-Test. In: Photosynthesis: from light to biosphere, ed. by P. Mathis, pp. 977-980. KAP Press, Dordrecht, The Netherlands.
  53. Strasser, R. J. and Tsimilli-Michael, M. 1998. Activity and heterogeneity of PS II probed in vivo by the chlorophyll-a fluorescence rise O-(K)-J-I-P. In: Photosynthesis: mechanisms and effects, ed. by G. Garab, pp. 4321-4324. KAP Press, Dordrecht, The Netherlands.
  54. Strasser, R. J., Srivastava, A. and Tsimilli-Michael, M. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing photosynthesis: mechanisms, regulation and adaptation, eds. by M. Yunus, U. Pathre and P. Mohanty, pp. 445-483. Taylor and Francis, London, UK.
  55. Wang, H., Hwang, S. F., Eudes, F., Chang, K. F., Howard, R. J. and Turnbull, G. D. 2006. Trichothecenes and aggressiveness of Fusarium graminearum causing seedling blight and root rot in cereals. Plant Pathol. 55:224-230. https://doi.org/10.1111/j.1365-3059.2006.01339.x
  56. Warzecha, T., Adamski, T., Kaczmarek, Z., Surma, M., Golinski, P., Perkowski, J., Chelkowski, J., Wisniewska, H., Krystkowiak, K. and Kuczynska, A. 2010. Susceptibility of hulled and hulless barley doubled haploids to Fusarium head blight. Cereal Res. Commun. 38:220-232. https://doi.org/10.1556/CRC.38.2010.2.8
  57. Warzecha, T., Adamski, T., Kaczmarek Z., Surma, M., Chelkowski, J., Wisniewska, H., Krystkowiak, K. and Kuczynska, A. 2011. Genotype-by-Environment interaction of barley DH lines infected with Fusarium culmorum (W.G.Sm.) Sacc. Field Crops Res. 120:21-30. https://doi.org/10.1016/j.fcr.2010.08.009
  58. Warzecha, T., Zielinski, A., Skrzypek, E., Wojtowicz, T. and Mos, M. 2012. Effect of mechanical damage on vigor. physiological parameters. and susceptibility of oat (Avena sativa) to Fusarium culmorum infection. Phytoparasitica 40:29-36. https://doi.org/10.1007/s12600-011-0196-y
  59. Warzecha, T., Skrzypek, E. and Sutkowska, A. 2015. Effect of Fusarium culmorum infection on the selected physiological and biochemical parameters of barley (Hordeum vulgare L.) DH lines. Physiol. Mol. Plant Pathol. 89:62-69. https://doi.org/10.1016/j.pmpp.2014.12.002
  60. Wisniewska, H., Stępien, Ł., Waskiewicz, A., Beszterda, M., Goral, T. and Belter, J. 2014. Toxigenic Fusarium species infecting wheat heads in 2009 in selected regions of Poland. Central Eur. J. Biol. 9:163-172.
  61. Wojciechowski, S., Chelkowski, J., Ponitka, A. and Slusarkiewicz-Jarzina, A. 1997. Evaluation of spring and winter wheat reaction to Fusarium culmorum and Fusarium avenaceum. J. Phytophatol. 145:99-103.
  62. Yang, Z. P., Gilbert, J., Fedak, G. and Somers, D. J. 2005. Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187-196. https://doi.org/10.1139/g04-104
  63. Zivcak, M., Brestic, M., Olsovska, K. and Slamka, P. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 54:133-139. https://doi.org/10.17221/392-PSE