DOI QR코드

DOI QR Code

Bending analysis of composite skew cylindrical shell panel

  • Haldar, Salil (Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering, Science and Technology) ;
  • Majumder, Aditi (Department of Mechanical Engineering, Techno India Saltlake) ;
  • Kalita, Kanak (Department of Aerospace Engineering and Applied Mechanics, Indian Institute of Engineering, Science and Technology)
  • Received : 2018.08.01
  • Accepted : 2019.02.12
  • Published : 2019.04.10

Abstract

A nine node isoparametric plate bending element is used for bending analysis of laminated composite skew cylindrical shell panels. Both thick and thin shell panels are solved. Rotary inertia and shear deformation are incorporated by considering first order shear deformation theory. The analysis is performed considering shallow shell theory. Both shallow and moderately deep skew cylindrical shells are investigated. Skew cylindrical shell panels having different thickness ratios (h/a), radius to length ratios (R/a), ply angle orientations, number of layers, aspect ratio (b/a), boundary conditions and various loading (concentrated, uniformly distributed, linear varying and doubly sinusoidal varying) conditions are analysed. Various new results are presented.

Keywords

References

  1. Achryya, A.K., Chakravorty, D. and Karmakar, A. (2009), "Bending characteristics of delaminated composite cylindrical shells a finite element approach", J. Reinf. Plast. Compos., 28(8), 965-978. https://doi.org/10.1177/0731684407087585
  2. Aggarwala, B.D. (1966), "Bending of rhombic plates", Quarter. J. Mech. Appl. Math., 19(1), 79-82. https://doi.org/10.1093/qjmam/19.1.79
  3. Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shellexperimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445
  4. Butalia, T.S., Kant, T. and Dixit, V.D. (1990), "Performance of heterosis element for bending of skew rhombic plates", Comput. Struct., 34(1), 23-49. https://doi.org/10.1016/0045-7949(90)90298-G
  5. Jin, G., Ye, T., Ma, X., Chen, Y., Su, Z. and Xie, X. (2013), "A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions", Int. J. Mech. Sci., 75, 357-376. https://doi.org/10.1016/j.ijmecsci.2013.08.003
  6. Jin, G., Ye, T., Chen, Y., Su, Z. and Yan, Y. (2013), "An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions", Compos. Struct., 106, 114-127. https://doi.org/10.1016/j.compstruct.2013.06.002
  7. Jin, G., Xie, X. and Liu, Z. (2014), "The haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory", Compos. Struct., 108, 435-448. https://doi.org/10.1016/j.compstruct.2013.09.044
  8. Jin, G., Ye, T., Jia, X. and Gao, S. (2014), "A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints", Compos. Struct., 109, 150-168. https://doi.org/10.1016/j.compstruct.2013.10.052
  9. Kalita, K. and Haldar, S. (2017), "Eigenfrequencies of simply supported taper plates with cut-outs", Struct. Eng. Mech., 63(1), 103-113. https://doi.org/10.12989/SEM.2017.63.1.103
  10. Kalita, K., Dey, P. and Haldar, S. (2018), "Robust geneticallyoptimized skew laminates", J. Mech. Eng. Sci., 233(1), 146-159. https://doi.org/10.1177/0954406218756943
  11. Kumar, A., Chakrabarti, A. and Bhargava, P. (2015), "Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory", J. Vibr. Contr., 21(4), 725-735. https://doi.org/10.1177/1077546313492555
  12. Kumari, S. and Chakravorty, D. (2010), "On the bending characteristics of damaged composite conoidal shells-a finite element approach", J. Reinf. Plast. Compos., 29(21), 3287-3296. https://doi.org/10.1177/0731684410372691
  13. Maleki, S. and Tahani, M. (2014), "An investigation into the static response of fiber-reinforced open conical shell panels considering various types of orthotropy", J. Mech. Eng. Sci., 228(1), 3-21. https://doi.org/10.1177/0954406213480585
  14. Mizusawa, T. (1994), "Application of the spline element method to analyse the bending of skew plates", Comput. Struct., 53(2), 439-448. https://doi.org/10.1016/0045-7949(94)90215-1
  15. Muhammad, T. and Singh, A.V. (2004), "A p-type solution for the bending of rectangular, circular, elliptic and skew plates", Int. J. Sol. Struct., 41(15), 3977-3997. https://doi.org/10.1016/j.ijsolstr.2004.02.047
  16. Najafov, A.M., Sofiyev, A.H., Hui, D., Karaca, Z., Kalpakci, V. and Ozcelik, M, (2014), "Stability of EG cylindrical shells with shear stresses on a Pasternak foundation", Steel Compos. Struct., 17(4), 453-470. https://doi.org/10.12989/scs.2014.17.4.453
  17. Reddy, J.N. (1989), "On refined computational models of composite laminates", Int. J. Numer. Meth. Eng., 27(2), 361-382. https://doi.org/10.1002/nme.1620270210
  18. Sahoo, S. and Chakravorty, D. (2004), "Finite element bending behaviour of composite hyperbolic paraboloidal shells with various edge conditions", J. Strain Analy. Eng. Des., 39(5), 499-513. https://doi.org/10.1243/0309324041896434
  19. Seide, P. and Chaudhuri, R.A. (1987), "Triangular finite element for analysis of thick laminated shells", Int. J. Numer. Meth. Eng., 24(8), 1563-1579. https://doi.org/10.1002/nme.1620240812
  20. Sengupta, D. (1995), "Performance study of a simple finite element in the analysis of skew rhombic plates", Comput. Struct., 54(6), 1173-1182. https://doi.org/10.1016/0045-7949(94)00405-R
  21. Shariyat, M. (2011), "An accurate double-superposition globallocal theory for vibration and bending analyses of cylindrical composite and sandwich shells subjected to thermo-mechanical loads", J. Mech. Eng. Sci., 225(8), 1816-1832. https://doi.org/10.1177/0954406211404742
  22. Sheikh, A.H., Haldar, S. and Sengupta, D. (2002), "A high precision shear deformable element for the analysis of laminated composite plates of different shapes", Compos. Struct., 55(3), 329-336. https://doi.org/10.1016/S0263-8223(01)00149-0
  23. Sk, L. and Sinha, P.K. (2005), "Improved finite element analysis of multilayered, doubly curved composite shells", J. Reinf. Plast. Compos., 24(4), 385-404. https://doi.org/10.1177/0731684405044899
  24. Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of nonhomogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
  25. Sofiyev, A.H. and Kuruoglu, N. (2016), "Domains of dynamic instability of FGM conical shells under time dependent periodic loads", Compos. Struct., 136, 139-148. https://doi.org/10.1016/j.compstruct.2015.09.060
  26. Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hi, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/SCS.2017.25.5.581
  27. Taj, M.N.A.G., Chakrabarti, A. and Talha, M. (2014), "Bending analysis of functionally graded skew sandwich plates with through-the thickness displacement variations", J. Sandw. Struct. Mater., 16(2), 210-248. https://doi.org/10.1177/1099636213512499
  28. Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill.
  29. Ye, T., Jin, G., Su, Z. and Chen, Y. (2014), "A modified Fourier solution for vibration analysis of moderately thick laminated plates with general boundary restraints and internal line supports", Int. J. Mech. Sci., 80, 29-46. https://doi.org/10.1016/j.ijmecsci.2014.01.001
  30. Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C. and Taylor, R.L. (1977), The Finite Element Method, McGraw-Hill London, U.K.