References
- Achryya, A.K., Chakravorty, D. and Karmakar, A. (2009), "Bending characteristics of delaminated composite cylindrical shells a finite element approach", J. Reinf. Plast. Compos., 28(8), 965-978. https://doi.org/10.1177/0731684407087585
- Aggarwala, B.D. (1966), "Bending of rhombic plates", Quarter. J. Mech. Appl. Math., 19(1), 79-82. https://doi.org/10.1093/qjmam/19.1.79
- Biswal, M., Sahu, S.K., Asha, A.V. and Nanda, N. (2016), "Hygrothermal effects on buckling of composite shellexperimental and FEM results", Steel Compos. Struct., 22(6), 1445-1463. https://doi.org/10.12989/scs.2016.22.6.1445
- Butalia, T.S., Kant, T. and Dixit, V.D. (1990), "Performance of heterosis element for bending of skew rhombic plates", Comput. Struct., 34(1), 23-49. https://doi.org/10.1016/0045-7949(90)90298-G
- Jin, G., Ye, T., Ma, X., Chen, Y., Su, Z. and Xie, X. (2013), "A unified approach for the vibration analysis of moderately thick composite laminated cylindrical shells with arbitrary boundary conditions", Int. J. Mech. Sci., 75, 357-376. https://doi.org/10.1016/j.ijmecsci.2013.08.003
- Jin, G., Ye, T., Chen, Y., Su, Z. and Yan, Y. (2013), "An exact solution for the free vibration analysis of laminated composite cylindrical shells with general elastic boundary conditions", Compos. Struct., 106, 114-127. https://doi.org/10.1016/j.compstruct.2013.06.002
- Jin, G., Xie, X. and Liu, Z. (2014), "The haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory", Compos. Struct., 108, 435-448. https://doi.org/10.1016/j.compstruct.2013.09.044
- Jin, G., Ye, T., Jia, X. and Gao, S. (2014), "A general Fourier solution for the vibration analysis of composite laminated structure elements of revolution with general elastic restraints", Compos. Struct., 109, 150-168. https://doi.org/10.1016/j.compstruct.2013.10.052
- Kalita, K. and Haldar, S. (2017), "Eigenfrequencies of simply supported taper plates with cut-outs", Struct. Eng. Mech., 63(1), 103-113. https://doi.org/10.12989/SEM.2017.63.1.103
- Kalita, K., Dey, P. and Haldar, S. (2018), "Robust geneticallyoptimized skew laminates", J. Mech. Eng. Sci., 233(1), 146-159. https://doi.org/10.1177/0954406218756943
- Kumar, A., Chakrabarti, A. and Bhargava, P. (2015), "Vibration analysis of laminated composite skew cylindrical shells using higher order shear deformation theory", J. Vibr. Contr., 21(4), 725-735. https://doi.org/10.1177/1077546313492555
- Kumari, S. and Chakravorty, D. (2010), "On the bending characteristics of damaged composite conoidal shells-a finite element approach", J. Reinf. Plast. Compos., 29(21), 3287-3296. https://doi.org/10.1177/0731684410372691
- Maleki, S. and Tahani, M. (2014), "An investigation into the static response of fiber-reinforced open conical shell panels considering various types of orthotropy", J. Mech. Eng. Sci., 228(1), 3-21. https://doi.org/10.1177/0954406213480585
- Mizusawa, T. (1994), "Application of the spline element method to analyse the bending of skew plates", Comput. Struct., 53(2), 439-448. https://doi.org/10.1016/0045-7949(94)90215-1
- Muhammad, T. and Singh, A.V. (2004), "A p-type solution for the bending of rectangular, circular, elliptic and skew plates", Int. J. Sol. Struct., 41(15), 3977-3997. https://doi.org/10.1016/j.ijsolstr.2004.02.047
- Najafov, A.M., Sofiyev, A.H., Hui, D., Karaca, Z., Kalpakci, V. and Ozcelik, M, (2014), "Stability of EG cylindrical shells with shear stresses on a Pasternak foundation", Steel Compos. Struct., 17(4), 453-470. https://doi.org/10.12989/scs.2014.17.4.453
- Reddy, J.N. (1989), "On refined computational models of composite laminates", Int. J. Numer. Meth. Eng., 27(2), 361-382. https://doi.org/10.1002/nme.1620270210
- Sahoo, S. and Chakravorty, D. (2004), "Finite element bending behaviour of composite hyperbolic paraboloidal shells with various edge conditions", J. Strain Analy. Eng. Des., 39(5), 499-513. https://doi.org/10.1243/0309324041896434
- Seide, P. and Chaudhuri, R.A. (1987), "Triangular finite element for analysis of thick laminated shells", Int. J. Numer. Meth. Eng., 24(8), 1563-1579. https://doi.org/10.1002/nme.1620240812
- Sengupta, D. (1995), "Performance study of a simple finite element in the analysis of skew rhombic plates", Comput. Struct., 54(6), 1173-1182. https://doi.org/10.1016/0045-7949(94)00405-R
- Shariyat, M. (2011), "An accurate double-superposition globallocal theory for vibration and bending analyses of cylindrical composite and sandwich shells subjected to thermo-mechanical loads", J. Mech. Eng. Sci., 225(8), 1816-1832. https://doi.org/10.1177/0954406211404742
- Sheikh, A.H., Haldar, S. and Sengupta, D. (2002), "A high precision shear deformable element for the analysis of laminated composite plates of different shapes", Compos. Struct., 55(3), 329-336. https://doi.org/10.1016/S0263-8223(01)00149-0
- Sk, L. and Sinha, P.K. (2005), "Improved finite element analysis of multilayered, doubly curved composite shells", J. Reinf. Plast. Compos., 24(4), 385-404. https://doi.org/10.1177/0731684405044899
- Sofiyev, A.H. and Kuruoglu, N. (2015), "Buckling of nonhomogeneous orthotropic conical shells subjected to combined load", Steel Compos. Struct., 19(1), 1-19. https://doi.org/10.12989/scs.2015.19.1.001
- Sofiyev, A.H. and Kuruoglu, N. (2016), "Domains of dynamic instability of FGM conical shells under time dependent periodic loads", Compos. Struct., 136, 139-148. https://doi.org/10.1016/j.compstruct.2015.09.060
- Sofiyev, A.H., Zerin, Z., Allahverdiev, B.P., Hi, D., Turan, F. and Erdem, H. (2017), "The dynamic instability of FG orthotropic conical shells within the SDT", Steel Compos. Struct., 25(5), 581-591. https://doi.org/10.12989/SCS.2017.25.5.581
- Taj, M.N.A.G., Chakrabarti, A. and Talha, M. (2014), "Bending analysis of functionally graded skew sandwich plates with through-the thickness displacement variations", J. Sandw. Struct. Mater., 16(2), 210-248. https://doi.org/10.1177/1099636213512499
- Timoshenko, S.P. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, McGraw-Hill.
- Ye, T., Jin, G., Su, Z. and Chen, Y. (2014), "A modified Fourier solution for vibration analysis of moderately thick laminated plates with general boundary restraints and internal line supports", Int. J. Mech. Sci., 80, 29-46. https://doi.org/10.1016/j.ijmecsci.2014.01.001
- Zienkiewicz, O.C., Taylor, R.L., Zienkiewicz, O.C. and Taylor, R.L. (1977), The Finite Element Method, McGraw-Hill London, U.K.