DOI QR코드

DOI QR Code

Analysis of array invariant-based source-range estimation using a horizontal array

수평 배열을 이용한 배열 불변성 기반의 음원 거리 추정 성능 분석

  • Received : 2018.11.07
  • Accepted : 2019.03.25
  • Published : 2019.03.31

Abstract

In sonar systems, the passive ranging of a target is an active research area. This paper analyzed the performance of passive ranging based on an array invariant method for different environmental and sonar parameters. The array invariant developed for source range estimation in shallow water. The advantages of this method are that detailed environmental information is not required, and the real-time ranging is possible since the computational burden is very small. Simulation was performed to verify the algorithm. And this method is applied to sea-going experimental data in 2013 near Jinhae port. This study shows the performance of ranging for source orientation, transmission signal length, and length of a receiver through numerical simulation experiments. Also, the results using nested array and uniform line arrays are compared.

소나 체계에서 표적의 거리를 수동으로 추정하는 방법은 활발히 연구되고 있는 분야이다. 본 논문은 배열 불변성을 기반으로 여러 환경과 소나 매개변수에 따른 거리 추정 성능을 제시한다. 배열 불변성은 천해에서의 음원 거리 추정 기법으로서, 상세한 환경 정보가 불필요하며 연산 량이 적어 실시간 거리 추정이 가능하다는 장점을 가진다. 본 논문에서는 기법의 성능을 확인하기 위해서 모의실험을 수행하였고, 2013년 진해항 인근에서 수행된 해상실험 데이터에 본 알고리듬을 적용하였다. 본 연구는 모의 실험을 통하여 음원의 방위각, 송신 신호의 길이, 그리고 수신 배열의 길이에 따른 거리 추정 성능을 보여준다. 또한, 네스티드 배열과 균일 선배열에 대한 거리 추정 결과를 비교하였다.

Keywords

GOHHBH_2019_v38n2_231_f0001.png 이미지

Fig. 1. Definition of the elevation angle and the bearing.

GOHHBH_2019_v38n2_231_f0002.png 이미지

Fig. 2. Sound speed profile from CTD and configuration of experiment.

GOHHBH_2019_v38n2_231_f0003.png 이미지

Fig. 3. Configuration of horizontal line array.

GOHHBH_2019_v38n2_231_f0004.png 이미지

Fig. 4. Beam-time intensity pattern of simulation, (a) case 1, (b) case 2.

GOHHBH_2019_v38n2_231_f0005.png 이미지

Fig. 5. Beam-time intensity pattern of experimental data, (a) case 1, (b) case 2.

GOHHBH_2019_v38n2_231_f0006.png 이미지

Fig. 6. Sound speed profile and configuration of simulation.

GOHHBH_2019_v38n2_231_f0007.png 이미지

Fig. 7. Error rate of range estimation according to the source orientation.

GOHHBH_2019_v38n2_231_f0008.png 이미지

Fig. 8. Beam-time intensity pattern, (a) broadside (0°), (b) endfire (90°).

GOHHBH_2019_v38n2_231_f0009.png 이미지

Fig. 9. Error rate of range estimation according to the transmission signal length.

GOHHBH_2019_v38n2_231_f0010.png 이미지

Fig. 11. Received signal, (a) 0.01 s, (b) 0.2 s.

GOHHBH_2019_v38n2_231_f0011.png 이미지

Fig. 10. Channel Impulse response.

Table 1. Design frequency of 21-element horizontal line array.

GOHHBH_2019_v38n2_231_t0001.png 이미지

Table 2. Result of source range estimation of simulation.

GOHHBH_2019_v38n2_231_t0002.png 이미지

Table 3. Result of source range estimation of experimental results.

GOHHBH_2019_v38n2_231_t0003.png 이미지

Table 4. Result of source range estimation according to the source orientation.

GOHHBH_2019_v38n2_231_t0004.png 이미지

Table 5. Result of range estimation according to the transmission signal length.

GOHHBH_2019_v38n2_231_t0005.png 이미지

Table 6. Result of source range estimation according to the length of a receiver.

GOHHBH_2019_v38n2_231_t0006.png 이미지

Table 7. Result of range estimation according to the source orientation.

GOHHBH_2019_v38n2_231_t0007.png 이미지

Table 8. Result of range estimation according to the transmission signal length.

GOHHBH_2019_v38n2_231_t0008.png 이미지

Table 9. Result of range estimation according to the length of a receiver.

GOHHBH_2019_v38n2_231_t0009.png 이미지

References

  1. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. 4th Ed (Wiley: New Jersey, 1999), pp. 435-470.
  2. A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, "Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem," J. Acoust. Soc. Am. 83, 571-587 (1988). https://doi.org/10.1121/1.396151
  3. A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, "An overview of matched field method in ocean acoustics," IEEE. J. Oceanic Engineering, 18, 401-424 (1993). https://doi.org/10.1109/48.262292
  4. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustic. 2nd Ed. (Springer, New Tork, 2011), pp. 133-139.
  5. S. Lee and N. C. Makris, "The array invariant," J. Acoust. Soc. Am. 119, 336-351 (2006). https://doi.org/10.1121/1.2139074
  6. H. C. Song and C. G. Cho, "The relation between the waveguide invariant and array invariant," J. Acoust. Soc. Am. 138, 899-903 (2015). https://doi.org/10.1121/1.4927090
  7. C. Cho, H. C. Song, and W. S. Hodgkiss, "Robust source-range estimation using the array/waveguide invariant and a vertical array," J. Acoust. Soc. Am. 139, 63-69 (2016). https://doi.org/10.1121/1.4939121
  8. H. C. Song and C. G. Cho, "Array invariant-based source localization in shallow water using a sparse vertical array," J. Acoust. Soc. Am. 141, 183-188 (2017). https://doi.org/10.1121/1.4973812
  9. C. Cho and H. C. Song, "Impact of array tilt on source-range estimation in shallow water using the array invariant," J. Acoust. Soc. Am. 141, 2849-2856 (2017). https://doi.org/10.1121/1.4981776
  10. G. Byun, J. S. Kim, C. Cho, H. C. Song, and S. H. Byun, "Array invariant-based ranging of a source of opportunity," J. Acoust. Soc. Am. 142, EL286-EL291 (2017). https://doi.org/10.1121/1.5003327
  11. G. Byun, C. Cho, H. C. Song, J. S. Kim, and S. H. Byun, "Array invariant-based calibration of array tilt using a source of opportunity," J. Acoust. Soc. Am. 143, 1318-1315 (2018). https://doi.org/10.1121/1.5025844