Fig. 1. Definition of the elevation angle and the bearing.
Fig. 2. Sound speed profile from CTD and configuration of experiment.
Fig. 3. Configuration of horizontal line array.
Fig. 4. Beam-time intensity pattern of simulation, (a) case 1, (b) case 2.
Fig. 5. Beam-time intensity pattern of experimental data, (a) case 1, (b) case 2.
Fig. 6. Sound speed profile and configuration of simulation.
Fig. 7. Error rate of range estimation according to the source orientation.
Fig. 8. Beam-time intensity pattern, (a) broadside (0°), (b) endfire (90°).
Fig. 9. Error rate of range estimation according to the transmission signal length.
Fig. 11. Received signal, (a) 0.01 s, (b) 0.2 s.
Fig. 10. Channel Impulse response.
Table 1. Design frequency of 21-element horizontal line array.
Table 2. Result of source range estimation of simulation.
Table 3. Result of source range estimation of experimental results.
Table 4. Result of source range estimation according to the source orientation.
Table 5. Result of range estimation according to the transmission signal length.
Table 6. Result of source range estimation according to the length of a receiver.
Table 7. Result of range estimation according to the source orientation.
Table 8. Result of range estimation according to the transmission signal length.
Table 9. Result of range estimation according to the length of a receiver.
References
- L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics. 4th Ed (Wiley: New Jersey, 1999), pp. 435-470.
- A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, "Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem," J. Acoust. Soc. Am. 83, 571-587 (1988). https://doi.org/10.1121/1.396151
- A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhalevsky, "An overview of matched field method in ocean acoustics," IEEE. J. Oceanic Engineering, 18, 401-424 (1993). https://doi.org/10.1109/48.262292
- F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustic. 2nd Ed. (Springer, New Tork, 2011), pp. 133-139.
- S. Lee and N. C. Makris, "The array invariant," J. Acoust. Soc. Am. 119, 336-351 (2006). https://doi.org/10.1121/1.2139074
- H. C. Song and C. G. Cho, "The relation between the waveguide invariant and array invariant," J. Acoust. Soc. Am. 138, 899-903 (2015). https://doi.org/10.1121/1.4927090
- C. Cho, H. C. Song, and W. S. Hodgkiss, "Robust source-range estimation using the array/waveguide invariant and a vertical array," J. Acoust. Soc. Am. 139, 63-69 (2016). https://doi.org/10.1121/1.4939121
- H. C. Song and C. G. Cho, "Array invariant-based source localization in shallow water using a sparse vertical array," J. Acoust. Soc. Am. 141, 183-188 (2017). https://doi.org/10.1121/1.4973812
- C. Cho and H. C. Song, "Impact of array tilt on source-range estimation in shallow water using the array invariant," J. Acoust. Soc. Am. 141, 2849-2856 (2017). https://doi.org/10.1121/1.4981776
- G. Byun, J. S. Kim, C. Cho, H. C. Song, and S. H. Byun, "Array invariant-based ranging of a source of opportunity," J. Acoust. Soc. Am. 142, EL286-EL291 (2017). https://doi.org/10.1121/1.5003327
- G. Byun, C. Cho, H. C. Song, J. S. Kim, and S. H. Byun, "Array invariant-based calibration of array tilt using a source of opportunity," J. Acoust. Soc. Am. 143, 1318-1315 (2018). https://doi.org/10.1121/1.5025844