DOI QR코드

DOI QR Code

Electrical power analysis of piezoelectric energy harvesting circuit using vortex current

와류를 이용한 압전 에너지 수확 회로의 전력 분석

  • 박건민 (제주대학교 해양시스템공학과) ;
  • 이종현 (제주대학교 해양시스템공학과) ;
  • 조치영 (국방과학연구소)
  • Received : 2018.11.06
  • Accepted : 2019.03.25
  • Published : 2019.03.31

Abstract

In this paper, the power of the energy harvesting circuit using the PVDF (Polyvinylidene fluoride) piezoelectric sensor transformed by vortex was analyzed. For power analysis, a general bridge diode rectifier circuit and a P-SSHI (Parallel Synchronized Switch Harvesting on Inductor) rectifier circuit with a switching circuit were used. The P-SSHI circuit is a circuit that incorporates a parallel synchronous switch circuit at the input of a general rectifier circuit to improve energy conversion efficiency. In this paper, the output power of general rectifier circuit and P-SSHI rectifier circuit is analyzed and verified through theory and experiment. It was confirmed that the efficiency was increased by 69 % through the experiment using the wind. In addition, a circuit for storing the harvested energy in the supercapacitor was implemented to confirm its applicability as a secondary battery.

본 논문에서는 유체의 와류 현상을 이용한 에너지 하베스팅 회로의 전력을 분석하였다. 와류를 전기 에너지로 바꾸기 위한 소자로 PVDF(Polyvinylidene fluoride) 압전 센서를 사용하였으며, 전력 분석을 위해 잘 알려진 브리지 다이오드 정류 회로와 전력 변환 효율을 향상시키기 위해 다이오드 정류회로 입력단에 병렬 동기 스위치 회로를 접목한 P-SSHI(Parallel Synchronized Switch Harvesting on Inductor) 정류 회로를 사용하였다. 다이오드 및 P-SSHI 정류 회로의 출력 전력은 이론을 통해 분석하였고 실험을 통해 검증하였다. 공기에 의한 와류를 이용한 실험을 통해 P-SSHI 정류 회로의 전력효율이 69 % 증가됨을 확인하였다. 또한 수확된 와류 에너지를 슈퍼 커패시터에 저장하는 회로를 구현하여 2차 전지로써 활용이 가능함을 확인하였다.

Keywords

GOHHBH_2019_v38n2_222_f0002.png 이미지

Fig. 3. Block diagram of piezoelectric energy harvesting circuit.

GOHHBH_2019_v38n2_222_f0003.png 이미지

Fig. 6. Energy storage circuit model of supercapacitor.

GOHHBH_2019_v38n2_222_f0004.png 이미지

Fig. 7. PSPICE simulation of P-SSHI circuit (a) P-SSHI circuit and, (b) output voltage waveform of piezoelectric sensor.

GOHHBH_2019_v38n2_222_f0005.png 이미지

Fig. 9.Output power of harvest circuit by load resistance.

GOHHBH_2019_v38n2_222_f0006.png 이미지

Fig. 10. Output power of rectifier circuit by vibration frequency.

GOHHBH_2019_v38n2_222_f0007.png 이미지

Fig. 11. Output power of rectifier circuit by displacement of piezoelectric sensor.

GOHHBH_2019_v38n2_222_f0008.png 이미지

Fig. 12. Output power of rectifier circuit by capacitance of piezoelectric sensor.

GOHHBH_2019_v38n2_222_f0009.png 이미지

Fig. 13. Output power of P-SSHI rectifier circuit by Q factor of switching circuit.

GOHHBH_2019_v38n2_222_f0010.png 이미지

Fig. 14. Experiment setup.

GOHHBH_2019_v38n2_222_f0011.png 이미지

Fig. 15.Output voltage of harvest circuit by load resistance.

GOHHBH_2019_v38n2_222_f0012.png 이미지

Fig. 16. Output power of harvest circuit by load resistance.

GOHHBH_2019_v38n2_222_f0013.png 이미지

Fig. 17. Energy storage circuit design of supercapacitor.

GOHHBH_2019_v38n2_222_f0014.png 이미지

Fig. 18. Output voltage waveform of supercapacitor.

GOHHBH_2019_v38n2_222_f0015.png 이미지

Fig. 19. Output current waveform after charging of supercapacitor.

GOHHBH_2019_v38n2_222_f0016.png 이미지

Fig. 1. (a) Fluid flow visualization by vortex, (b) vibration of piezoelectric sensor by vortex.

GOHHBH_2019_v38n2_222_f0017.png 이미지

Fig. 2. PVDF piezoelectric sensor.

GOHHBH_2019_v38n2_222_f0018.png 이미지

Fig. 4. (a) General energy harvesting circuit, (b) output voltage waveform of piezoelectric sensor.

GOHHBH_2019_v38n2_222_f0019.png 이미지

Fig. 5. (a) P-SSHI energy harvesting circuit, (b) output voltage waveform of piezoelectric sensor.

GOHHBH_2019_v38n2_222_f0020.png 이미지

Fig. 8. (a) Experiment set up, (b) output voltage waveform of piezoelectric sensor.

Table 1. Parameters of each variable applied to the simulation.

GOHHBH_2019_v38n2_222_t0001.png 이미지

References

  1. X. D. Do, Y. H. Ko, H. H. Nguyen, H. B. Le, and S. G. Lee, "An efficient parallel SSHI rectifier for piezoelectric energy scavenging systems," 13th ICACT, 1394-1397 (2011).
  2. L. Garbuio, M. Lallart, D. Guyomar, C. Richard, and D. Audigier, "Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique," IEEE Trans. Ind. Electron. 56, 1048-1056 (2009). https://doi.org/10.1109/TIE.2009.2014673
  3. C. Peters, J. Handwerker, D. Maurath, and Y. Manoli, "A sub-500 mV highly efficient active rectifier for energy harvesting applications," IEEE Trans. Circuit and System, 58, 1542-1550 (2011). https://doi.org/10.1109/TCSI.2011.2157739
  4. X. D. Do, H. H. Nguyen, S. K. Han, D. S. Ha, and S. G. Lee, "A self-powered high-efficiency rectifier with automatic resetting of transducer capacitance in piezoe-lectric energy harvesting systems," IEEE Trans. VLSI, 23, 444-453 (2015). https://doi.org/10.1109/TVLSI.2014.2312532
  5. H. -J. Kim and G. -B. Chung, "AC/DC resonant piezopowered boost converter for piezoelectric energy harvestingv", J. KIPE. 448-495 (2009).
  6. A. Giacomello and M. Porfiri, "Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites," J. Applied Physics, 109, 084903 (2011). https://doi.org/10.1063/1.3569738
  7. G. W. Taylor, J. R. Burns, S. MKammann, W. B. Powers, and T. R. Welsh, "The energy harvesting eel: a small subsurface ocean/river power generator", IEEE J. Oceanic Engineering, 26 (2001).
  8. R. Song, X. Shan, J. Li, T. Xie, and Q. Sun, "A piezoelectric energy harvester with vortex induced vibration," Symp. Piezoelectricity, Acoustic Waves, and Device Applications, 322-325 (2015).
  9. S. K. Kumar, C. Bose, S. F. Ali, S. Sarkar, and S. Gupta, "Investigations on a vortex induced vibration based energy harvester," Applied Physics Lett. 111, 243903 (2017). https://doi.org/10.1063/1.5001863
  10. M. Lallart, Y. Chieh, and D. Guyomar, "Switching delay effects on nonlinear piezoelectric energy harvesting techniques," IEEE Transactions on Industrial Electronics, 464-472 (2012). https://doi.org/10.1109/TIE.2011.2148675
  11. L. Zhu, R. Chen, and X. Liu, "Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces," J. Intelligent material Systems and Structures, 23, 441-451 (2012). https://doi.org/10.1177/1045389X11435433
  12. L. Zubieta and R. Bonert, "Characterization of doublelayer capacitors for power electronics applications," IEEE Transactions on Industry Applications, 36, 199-205 (2000). https://doi.org/10.1109/28.821816