Fig. 3. Block diagram of piezoelectric energy harvesting circuit.
Fig. 6. Energy storage circuit model of supercapacitor.
Fig. 7. PSPICE simulation of P-SSHI circuit (a) P-SSHI circuit and, (b) output voltage waveform of piezoelectric sensor.
Fig. 9.Output power of harvest circuit by load resistance.
Fig. 10. Output power of rectifier circuit by vibration frequency.
Fig. 11. Output power of rectifier circuit by displacement of piezoelectric sensor.
Fig. 12. Output power of rectifier circuit by capacitance of piezoelectric sensor.
Fig. 13. Output power of P-SSHI rectifier circuit by Q factor of switching circuit.
Fig. 14. Experiment setup.
Fig. 15.Output voltage of harvest circuit by load resistance.
Fig. 16. Output power of harvest circuit by load resistance.
Fig. 17. Energy storage circuit design of supercapacitor.
Fig. 18. Output voltage waveform of supercapacitor.
Fig. 19. Output current waveform after charging of supercapacitor.
Fig. 1. (a) Fluid flow visualization by vortex, (b) vibration of piezoelectric sensor by vortex.
Fig. 2. PVDF piezoelectric sensor.
Fig. 4. (a) General energy harvesting circuit, (b) output voltage waveform of piezoelectric sensor.
Fig. 5. (a) P-SSHI energy harvesting circuit, (b) output voltage waveform of piezoelectric sensor.
Fig. 8. (a) Experiment set up, (b) output voltage waveform of piezoelectric sensor.
Table 1. Parameters of each variable applied to the simulation.
References
- X. D. Do, Y. H. Ko, H. H. Nguyen, H. B. Le, and S. G. Lee, "An efficient parallel SSHI rectifier for piezoelectric energy scavenging systems," 13th ICACT, 1394-1397 (2011).
- L. Garbuio, M. Lallart, D. Guyomar, C. Richard, and D. Audigier, "Mechanical energy harvester with ultralow threshold rectification based on SSHI nonlinear technique," IEEE Trans. Ind. Electron. 56, 1048-1056 (2009). https://doi.org/10.1109/TIE.2009.2014673
- C. Peters, J. Handwerker, D. Maurath, and Y. Manoli, "A sub-500 mV highly efficient active rectifier for energy harvesting applications," IEEE Trans. Circuit and System, 58, 1542-1550 (2011). https://doi.org/10.1109/TCSI.2011.2157739
- X. D. Do, H. H. Nguyen, S. K. Han, D. S. Ha, and S. G. Lee, "A self-powered high-efficiency rectifier with automatic resetting of transducer capacitance in piezoe-lectric energy harvesting systems," IEEE Trans. VLSI, 23, 444-453 (2015). https://doi.org/10.1109/TVLSI.2014.2312532
- H. -J. Kim and G. -B. Chung, "AC/DC resonant piezopowered boost converter for piezoelectric energy harvestingv", J. KIPE. 448-495 (2009).
- A. Giacomello and M. Porfiri, "Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites," J. Applied Physics, 109, 084903 (2011). https://doi.org/10.1063/1.3569738
- G. W. Taylor, J. R. Burns, S. MKammann, W. B. Powers, and T. R. Welsh, "The energy harvesting eel: a small subsurface ocean/river power generator", IEEE J. Oceanic Engineering, 26 (2001).
- R. Song, X. Shan, J. Li, T. Xie, and Q. Sun, "A piezoelectric energy harvester with vortex induced vibration," Symp. Piezoelectricity, Acoustic Waves, and Device Applications, 322-325 (2015).
- S. K. Kumar, C. Bose, S. F. Ali, S. Sarkar, and S. Gupta, "Investigations on a vortex induced vibration based energy harvester," Applied Physics Lett. 111, 243903 (2017). https://doi.org/10.1063/1.5001863
- M. Lallart, Y. Chieh, and D. Guyomar, "Switching delay effects on nonlinear piezoelectric energy harvesting techniques," IEEE Transactions on Industrial Electronics, 464-472 (2012). https://doi.org/10.1109/TIE.2011.2148675
- L. Zhu, R. Chen, and X. Liu, "Theoretical analyses of the electronic breaker switching method for nonlinear energy harvesting interfaces," J. Intelligent material Systems and Structures, 23, 441-451 (2012). https://doi.org/10.1177/1045389X11435433
- L. Zubieta and R. Bonert, "Characterization of doublelayer capacitors for power electronics applications," IEEE Transactions on Industry Applications, 36, 199-205 (2000). https://doi.org/10.1109/28.821816