DOI QR코드

DOI QR Code

Performance of convolutional coding using block interleaving in underwater frequency-selective channel

수중 주파수 선택적 채널에서 블록 인터리빙 기법을 적용한 길쌈부호화 기법의 성능

  • 박지현 (부경대학교 음향진동공학연구소) ;
  • 윤종락 (부경대학교 정보통신공학과)
  • Received : 2018.11.08
  • Accepted : 2019.03.25
  • Published : 2019.03.31

Abstract

In this paper, we evaluate the communication performance of convolutional code with block interleaving in a frequency-selective channel. Block interleaving is a technique for spreading and rearranging digital data streams. A block interleaving technique is applied to improve the performance by dispersing the concentration of burst errors in a frequency-selective channel. As a result of evaluating the performance of the convolutional code with block interleaving in the water tank experiment, There was no difference in the performance of convolutional codes using block interleaving in a frequency-selective channel. However, in the frequency-selective channel, the convolutional code with block interleaving has a gain of 2dB, and it is confirmed that the underwater acoustic communication performance is improved.

본 논문은 수중 주파수 선택적 채널에서 블록 인터리빙 기법을 적용한 길쌈부호기법의 통신성능을 평가하였다. 블록 인터리빙은 디지털 데이터 열을 확산 분산하고 재배치하는 기법으로 주파수 선택적 채널에서 연집오류(burst error)의 집중을 분산시켜 성능을 향상하게 시키는 기법으로 블록 인터리빙 기법이 적용되고 있다. 수조 실험에서 블록 인터리빙이 적용된 길쌈부호의 성능을 평가한 결과 주파수 비 선택적 채널에서 블록 인터리빙을 적용한 길쌈부호의 성능의 차이가 없었다. 하지만 주파수 선택적 채널에서는 블록 인터리빙이 적용된 길쌈부호가 길쌈부호보다 2 dB 이득이 발생하였으며, 이로 인해 수중 음향 통신 성능향상에 기여함을 확인하였다.

Keywords

GOHHBH_2019_v38n2_207_f0001.png 이미지

Fig. 1. Underwater multipath channel.

GOHHBH_2019_v38n2_207_f0002.png 이미지

Fig. 2. Underwater frequency-selective channel.

GOHHBH_2019_v38n2_207_f0003.png 이미지

Fig. 3. FEC k = 7, rate 1/2 convolutional encoder.

GOHHBH_2019_v38n2_207_f0004.png 이미지

Fig. 4. Viterbi decoder.

GOHHBH_2019_v38n2_207_f0005.png 이미지

Fig. 5. Block interleaving.

GOHHBH_2019_v38n2_207_f0006.png 이미지

Fig. 6. Experimental configuration in water tank.

GOHHBH_2019_v38n2_207_f0007.png 이미지

Fig. 7. Delay spread of water tank.

GOHHBH_2019_v38n2_207_f0008.png 이미지

Fig. 8. Water tank channel frequency response.

GOHHBH_2019_v38n2_207_f0009.png 이미지

Fig. 9. BER characteristic of non frequency-selective channel.

GOHHBH_2019_v38n2_207_f0010.png 이미지

Fig. 10. BER characteristic of frequency-selective channel.

Table 1. Water tank experiment parameters.

GOHHBH_2019_v38n2_207_t0001.png 이미지

References

  1. K. Park, J. Park, S. W. Lee, J. W. Jung, J. Shin, and J. R. Yoon, "Performance evaluation of underwater acoustic communication in frequency selective shallow water," J. Acoust. Soc. Kr. 32, 95-103 (2013). https://doi.org/10.7776/ASK.2013.32.2.095
  2. R. J. Urick, Principles of Underwater Sound 3th Edition (McGraw-Hill, New York, 1983), pp. 99-233.
  3. M. Chitre, S. Shahabudeen, and M. Stojanovic, "Underwater acoustic communications and networking: recent advances and future challenges," J. Marine Tech. Soc., 42, 103-116 (2008).
  4. G. Zhang, J. M. Hovem, H. Dong, and L. Liu, "Experimental studies of underwater acoustic communications over multipath channels," SENSORCOMM 2010, IEEE, 458-461 (2010).
  5. L. Liu, Y, Wang, L. Li, X. Zhang, and J. Wang, "Design and implementation of channel coding for underwater acoustic system," ASICON, IEEE 497-500 (2009).
  6. M. Stojanovic and J. C. Preisig, "Underwater acoustic communication channels: propagation models and statistical characterization," Communications Magazine, IEEE, 47, 84-89 (2009).
  7. D. Choi, H. Kim, N. Kim, S. Kim, and J. Chung, "Coherence bandwidth and coherence time for the communication frame in the underwater of East Sea", J. Acoust. Soc. Kr. 29, 365-373 (2010).
  8. J. Kim, K. Park, J. Park, and J. R. Yoon, "Coherence bandwidth effects on underwater image transmission in multipath channel," Jpn. J. Appl. Phys. 50, 07HG05-1-07HG05-5 (2011). https://doi.org/10.7567/JJAP.50.07HG05
  9. M. Siderius, M. B. Poter, P. Hursky, V. McDonald, and the KauaiEx Group, "Effects of ocean thermocline variability on noncoherent underwater acoustic communications," J. Acoust. Soc. Am. 121, 1895-1908 (2007). https://doi.org/10.1121/1.2436630
  10. J. Trubuil, A. Goalic, N. Beuzelin, and C. Laot, "Check and validate reed solomon block turbo codes in shallow underwater acoustic communication," Proc. IEEE OCEANS, 1-6 (2010).
  11. J. Trubuil, A. Goalic, and N. Beuzelin, "An overview of channel coding for underwater acoustic communications," MILCOM 2012, IEEE, 1-7 (2012).
  12. A. Goalic, J. Trubuil, and N. Beuzelin, "Channel coding for underwater acoustic communication system", Oceans 2006, IEEE, 1-4 (2006).
  13. C. Seo, J. Park, K. Park, J. Shin, J. Jumg, and J. R. Yoon, "Performance of convolution coding underwater acoustic communication system on frequency selectivity index", J. Acoust. Soc. Kr. 32, 95-103 (2013). https://doi.org/10.7776/ASK.2013.32.2.095
  14. R. V. Nee, and R. prasad, OFDM for Wireless Multimedia Communications (Artech House, Norwood, 2000), pp. 33-58.
  15. J. G. Proakis, and M. Salehi, Digital Communications 4th Edition (McGraw-Hill, New York, 2001), pp. 470-506.
  16. J. Park, C. Seo, K. Park, and J. R. Yoon, "Effectiveness of convolution code in multipath underwater acoustic channel," Jpn. J. Appl. Phys. 52, 07HG01-1-07HG01-3 (2011).
  17. C. Seo, J. Park, K. Park, and J. R. Yoon, "Performance comparison of convolution and Reed-Solomon codes in underwater multipath fading channel," JJpn. J. Appl. Phys. 53, 07KG02-1-07KG02-3 (2014). https://doi.org/10.7567/JJAP.53.07KG02