Fig. 1. Underwater multipath channel.
Fig. 2. Underwater frequency-selective channel.
Fig. 3. FEC k = 7, rate 1/2 convolutional encoder.
Fig. 4. Viterbi decoder.
Fig. 5. Block interleaving.
Fig. 6. Experimental configuration in water tank.
Fig. 7. Delay spread of water tank.
Fig. 8. Water tank channel frequency response.
Fig. 9. BER characteristic of non frequency-selective channel.
Fig. 10. BER characteristic of frequency-selective channel.
Table 1. Water tank experiment parameters.
References
- K. Park, J. Park, S. W. Lee, J. W. Jung, J. Shin, and J. R. Yoon, "Performance evaluation of underwater acoustic communication in frequency selective shallow water," J. Acoust. Soc. Kr. 32, 95-103 (2013). https://doi.org/10.7776/ASK.2013.32.2.095
- R. J. Urick, Principles of Underwater Sound 3th Edition (McGraw-Hill, New York, 1983), pp. 99-233.
- M. Chitre, S. Shahabudeen, and M. Stojanovic, "Underwater acoustic communications and networking: recent advances and future challenges," J. Marine Tech. Soc., 42, 103-116 (2008).
- G. Zhang, J. M. Hovem, H. Dong, and L. Liu, "Experimental studies of underwater acoustic communications over multipath channels," SENSORCOMM 2010, IEEE, 458-461 (2010).
- L. Liu, Y, Wang, L. Li, X. Zhang, and J. Wang, "Design and implementation of channel coding for underwater acoustic system," ASICON, IEEE 497-500 (2009).
- M. Stojanovic and J. C. Preisig, "Underwater acoustic communication channels: propagation models and statistical characterization," Communications Magazine, IEEE, 47, 84-89 (2009).
- D. Choi, H. Kim, N. Kim, S. Kim, and J. Chung, "Coherence bandwidth and coherence time for the communication frame in the underwater of East Sea", J. Acoust. Soc. Kr. 29, 365-373 (2010).
- J. Kim, K. Park, J. Park, and J. R. Yoon, "Coherence bandwidth effects on underwater image transmission in multipath channel," Jpn. J. Appl. Phys. 50, 07HG05-1-07HG05-5 (2011). https://doi.org/10.7567/JJAP.50.07HG05
- M. Siderius, M. B. Poter, P. Hursky, V. McDonald, and the KauaiEx Group, "Effects of ocean thermocline variability on noncoherent underwater acoustic communications," J. Acoust. Soc. Am. 121, 1895-1908 (2007). https://doi.org/10.1121/1.2436630
- J. Trubuil, A. Goalic, N. Beuzelin, and C. Laot, "Check and validate reed solomon block turbo codes in shallow underwater acoustic communication," Proc. IEEE OCEANS, 1-6 (2010).
- J. Trubuil, A. Goalic, and N. Beuzelin, "An overview of channel coding for underwater acoustic communications," MILCOM 2012, IEEE, 1-7 (2012).
- A. Goalic, J. Trubuil, and N. Beuzelin, "Channel coding for underwater acoustic communication system", Oceans 2006, IEEE, 1-4 (2006).
- C. Seo, J. Park, K. Park, J. Shin, J. Jumg, and J. R. Yoon, "Performance of convolution coding underwater acoustic communication system on frequency selectivity index", J. Acoust. Soc. Kr. 32, 95-103 (2013). https://doi.org/10.7776/ASK.2013.32.2.095
- R. V. Nee, and R. prasad, OFDM for Wireless Multimedia Communications (Artech House, Norwood, 2000), pp. 33-58.
- J. G. Proakis, and M. Salehi, Digital Communications 4th Edition (McGraw-Hill, New York, 2001), pp. 470-506.
- J. Park, C. Seo, K. Park, and J. R. Yoon, "Effectiveness of convolution code in multipath underwater acoustic channel," Jpn. J. Appl. Phys. 52, 07HG01-1-07HG01-3 (2011).
- C. Seo, J. Park, K. Park, and J. R. Yoon, "Performance comparison of convolution and Reed-Solomon codes in underwater multipath fading channel," JJpn. J. Appl. Phys. 53, 07KG02-1-07KG02-3 (2014). https://doi.org/10.7567/JJAP.53.07KG02