DOI QR코드

DOI QR Code

Three Unreported Endophytic Fungi Isolated from Conifer Leaves of Pinus densiflora in Korea

소나무 침엽에서 분리된 3종의 국내 미기록 내생균

  • Park, Hyeok (Department of Biology Education, Korea National University of Education) ;
  • Eom, Ahn-Heum (Department of Biology Education, Korea National University of Education)
  • 박혁 (한국교원대학교 생물교육과) ;
  • 엄안흠 (한국교원대학교 생물교육과)
  • Received : 2019.02.26
  • Accepted : 2019.03.15
  • Published : 2019.03.01

Abstract

We isolated endophytic fungi from the conifer leaves of Pinus densiflora inhabiting Buan-gun, Jeollabuk-do, Korea. We identified the isolated fungal strains based on phylogenetic analysis performed using the nucleotide sequences of the internal transcribed spacer, large subunit, and beta-tubulin. We confirmed the presence of three novel endophytic fungi in Korea, namely Paracamarosporium hawaiiense, Tubakia dryina, and Zasmidium fructigenum. In this report, we described the morphological characteristics of these fungal strains and the results of their phylogenetic analysis.

본 연구에서는 전북 부안군에 서식하는 소나무의 침엽에서 내생균을 분리하였다. 분리된 균주는 internal transcribed spacer 영역, rDNA의 large subunit 영역, beta-tubulin 영역의 DNA 염기서열을 분석하여 동정하였다. 연구 과정에서 3종의 국내 미기록 내생균 균주를 확인하였으며, 확인된 종은 Paracamarosporiumhawaiiense, Tubakia dryina, Zasmidiumfructigenum이다. 확인된 미기록 균주의 형태적 특성 및 계통적 분석의 결과에 대해 서술하였다.

Keywords

GNHHDL_2019_v47n1_35_f0001.png 이미지

Fig. 1. Colonies of Paracamarosporium hawaiiense 16B647 grown for 7 days on potato dextrose agar (A) and malt extract agar (E), conidia (D, H). Colonies of Tubakia dryina (16B554) grown for 7 days on PDA (B) and MEA (F), conidiophore and conidia (I, J). Colonies of Zasmidium fructigenum (16B210) grown for 7 days on PDA (C) and MEA (G), conidiophore and conidia (K, L). (scale bars =10 μm).

GNHHDL_2019_v47n1_35_f0002.png 이미지

Fig. 2. Neighbor-joining phylogenetic tree based on a concatenated alignment of internal transcribed spacer and large subunit sequences. Phaeosphaeria pontiformis was used as an outgroup. Numbers on branches indicate bootstrap values (1,000 replicates). Fungal strain isolated in this study is in bold.

GNHHDL_2019_v47n1_35_f0003.png 이미지

Fig. 3. Neighbor-joining phylogenetic tree based on a concatenated alignment of internal transcribed spacer, large subunit and beta-tubulin sequences. Xylaria hypoxylon was used as an outgroup. Numbers on branches indicate bootstrap values (1,000 replicates). Fungal strain isolated in this study is in bold.

GNHHDL_2019_v47n1_35_f0004.png 이미지

Fig. 4. Neighbor-joining phylogenetic tree based on a concatenated alignment of internal transcribed spacer and large subunit sequences. Xylaria hypoxylon was used as an outgroup. Numbers on branches indicate bootstrap values (1,000 replicates). Fungal strain isolated in this study is in bold.

Table 1. Morphological characteristics of fungal strains isolated from Pinus densifora.

GNHHDL_2019_v47n1_35_t0001.png 이미지

Table 2. List of fungal species used in phylogenetic analysis with the GenBank accession numbers

GNHHDL_2019_v47n1_35_t0002.png 이미지

References

  1. Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology 1988;69:2-9. https://doi.org/10.2307/1943154
  2. Bouton J, Gates R, Belesky D, Owsley M. Yield and persistence of tall fescue in the southeastern coastal plain after removal of its endophyte. Agron J 1993;85:52-5. https://doi.org/10.2134/agronj1993.00021962008500010011x
  3. Rowan DD, Latch GCM. Utilization of endophyte-infected perennial ryegrasses for increased insect resistance. In: Bacon CW, White Jr, editors. Biotechnology of endophytic fungi of grasses. Boca Raton, Fla: CRC; 1994. p.169-83.
  4. Koch K, Podlech J, Pfeiffer E, Metzler M. Total synthesis of alternariol. J Org Chem 2005;70:3275-6. https://doi.org/10.1021/jo050075r
  5. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess W. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996;142:435-40. https://doi.org/10.1099/13500872-142-2-435
  6. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis N, Gelfand D, Sninsky J, White T, editors. PCR protocols: a guide to methods and applications. New York: Academic Press, Inc; 1990. p315-22.
  7. Moncalvo JM, Lutzoni FM, Rehner SA, Johnson J, Vilgalys R. Phylogenetic relationships of agaric fungi based on nuclear large subunit ribosomal DNA sequences. Syst Biol 2000;49:278-305. https://doi.org/10.1093/sysbio/49.2.278
  8. Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 1995;61:1323-30. https://doi.org/10.1128/AEM.61.4.1323-1330.1995
  9. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-4. https://doi.org/10.1093/molbev/msw054
  10. Crous P, Groenewald J. Microdiplodia hawaiiensis. Fungal Planet, no. 7. Utrecht, The Netherlands: CBS-KNAW Fungal Biodiversity Centre; 2006.
  11. Kowalski T. Tubakia dryina, symptoms and pathogenicity to Quercus robur. Acta Mycol 2006;41:299-304. https://doi.org/10.5586/am.2006.030
  12. Li YX, Himaya S, Dewapriya P, Kim HJ, Kim SK. Anti-proliferative effects of isosclerone isolated from marine fungus Aspergillus fumigatus in MCF-7 human breast cancer cells. Process Biochem 2014;49:2292-8. https://doi.org/10.1016/j.procbio.2014.08.016
  13. Damm U, Verkley G, Crous P, Fourie P, Haegi A, Riccioni L. Novel Paraconiothyrium species on stone fruit trees and other woody hosts. Persoonia 2008;20:9. https://doi.org/10.3767/003158508X286842
  14. Crous PW, Schumacher RK, Wingfield MJ, Lombard L, Giraldo A, Christensen M, Gardiennet A, Nakashima C, Pereira OL, Smith AJ, Growenewald JZ. Fungal systematics and evolution: FUSE 1. Sydowia 2015; 67:81-118.
  15. Wijayawardene NN, Hyde KD, Bhat DJ, Camporesi E, Schumacher RK, Chethana KWT, Wikee S, Bahkali AH, Wang Y. Camarosporium-like species are polyphyletic in Pleosporales; introducing Paracamarosporium and Pseudocamarosporium gen. nov. in Montagnulaceae. Cryptogam Mycol 2014;35:177-98. https://doi.org/10.7872/crym.v35.iss2.2014.177
  16. Soca-Chafre G, Rivera-Orduna FN, Hidalgo-Lara ME, Hernandez-Rodriguez C, Marsch R, Flores-Cotera LB. Molecular phylogeny and paclitaxel screening of fungal endophytes from Taxus globosa. Fungal Biol 2011;115:143-56. https://doi.org/10.1016/j.funbio.2010.11.004
  17. Zhou J, Diao X, Wang T, Chen G, Lin Q, Yang X, Xu J. Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PloS One 2018;13:e0197359. https://doi.org/10.1371/journal.pone.0197359
  18. Sutton BC. Tubakia nom. nov. Trans Br Mycol Soc 1973; 60:164-5. https://doi.org/10.1016/S0007-1536(73)80077-4
  19. Jones J, Holcomb G. Conidium ontogeny and cytology of Tubakia dryina from Louisiana hardwoods. Mycologia 1978;70:1212-6. https://doi.org/10.1080/00275514.1978.12020338
  20. Gennaro M, Gonthier P, Nicolotti G. Fungal endophytic communities in healthy and declining Quercus robur L. and Q. cerris L. trees in northern Italy. J Phytopathol 2003;151:529-34. https://doi.org/10.1046/j.1439-0434.2003.00763.x
  21. Venkatasubbaiah P, Chilton W. Phytotoxins produced by Tubakia dryina. Mycopathologia 1992;120:33-7. https://doi.org/10.1007/BF00578500
  22. Huang F, Groenewald J, Zhu L, Crous PW, Li H. Cercosporoid diseases of Citrus. Mycologia 2015;107:1151-71. https://doi.org/10.3852/15-059
  23. Lopez D, Cherigo L, Mejia LC, Loza-Mejia MA, Martinez-Luis S. $\alpha$-Glucosidase inhibitors from a mangrove associated fungus, Zasmidium sp. strain EM5-10. BMC Chem 2019;13:22. https://doi.org/10.1186/s13065-019-0540-8