DOI QR코드

DOI QR Code

Morphological Characteristics of Siberian Flying Squirrel (Pteromys volans): Sexual Dimorphism and Camparison of Morphological Characteristics in Different Latitudes

하늘다람쥐(Pteromys volans)의 형태적 특성: 성적이형성 및 위도에 따른 형태학적 특성 비교

  • Kim, Junsoo (Department of Forest Sciences, Seoul National University) ;
  • Jeon, Jonghoon (Department of Forest Sciences, Seoul National University) ;
  • Lee, Woo-Shin (Department of Forest Sciences, Seoul National University) ;
  • Kim, Jong-U (Department of Forest Sciences, Seoul National University)
  • 김준수 (서울대학교 산림과학부) ;
  • 전종훈 (서울대학교 산림과학부) ;
  • 이우신 (서울대학교 산림과학부) ;
  • 김종우 (서울대학교 산림과학부)
  • Received : 2018.10.24
  • Accepted : 2019.02.25
  • Published : 2019.03.31

Abstract

This study was conducted to clarify the morphological characteristics of Siberian flying squirrel (Pteromys volans). We investigated 6 morphological characteristics from April, 2014 to March 2016 at Mt. Baekwoon, Wonju, Gangwon province. We found that Siberian flying squirrel showed female-biased sexual dimorphism. This result would be related to reproductive strategy of the species which female nurse offspring alone. As results of comparison of morphological characteristics from Korea, Finland and Japan, both body weight and head-body length appeared heavier and longer from high-latitude to low-latitude. This result suggest that morphological difference between different latitudes would be related with climate and habitat environment. The more researches would be needed with other morphological characteristics of Siberian flying squirrel.

하늘다람쥐의 형태적 특성을 파악하기 위해 강원도 원주시 백운산에서 2014년 4월부터 2016년 3월까지 하늘다람쥐의 6가지 외부형태적 특성에 대한 측정을 실시하고 분석하였다. 그 결과 하늘다람쥐는 암컷이 수컷보다 큰 암컷편향적 성적이형성을 나타내는 것으로 확인되었다. 이는 단독 생활을 하고 암컷 혼자 새끼를 키우는 하늘다람쥐의 번식전략과 관련이 있는 것으로 보인다. 국내와 핀란드, 일본에서 파악된 하늘다람쥐의 외부형태 측정치 중 체중과 머리-몸통의 길이를 비교한 결과, 모두 핀란드와 일본 그리고 한국 순서대로 위도가 높은 지역이 크게 나타났다. 이러한 형태적 특성의 차이는 분포 지역 위도에 따른 기후와 서식환경 차이에 따른 것으로 생각되며, 추후 체중과 머리-몸통의 길이 이외의 외부형태 측정치에 대한 비교 연구가 필요할 것으로 생각된다.

Keywords

HOMHBJ_2019_v108n1_133_f0001.png 이미지

Figure 1. Measurements of small mammal.

HOMHBJ_2019_v108n1_133_f0002.png 이미지

Figure. 2. Differences in mean body mass and head-body length of Siberian flying squirrel between Korea (n=51), Hokkaido (n=22, Ohdachi et al. 2015) and Finland (n=72, Selonen et al. 2016).

Table 1. Description of morphometric variables and sexual dimorphism index of Siberian flying squirrel between males and females.

HOMHBJ_2019_v108n1_133_t0001.png 이미지

References

  1. Amadon, D. 1975. Why are female birds of prey larger than males? Raptor Research 9: 1-11.
  2. Amori, G., Aloise, G. and Luiselli, L. 2014. Modern analyses on an historical data set: skull morphology of Italian red squirrel populations. Zookeys 368: 79-89. https://doi.org/10.3897/zookeys.368.4691
  3. Andersson, M. 1994. Sexual selection. Princeton University Press. New Jersey, U.S.A. pp. 624.
  4. Barnett, A. and Dutton, J. 1995. Expedition field techniques small mammals (excluding bats). Expedition Advisory Center. London, U.K. pp. 126.
  5. Bergmann, C. 1847. Ueder die Verhalltnisse der Warmeokonomie der Thiere zu ihrer Grosse. Gottinger studien 3: 595-780.
  6. Carole, T., Michel, G.J., Guy, V.L., Mark, H. and Nicolas, M. 2006. How does environmental variation influence body mass, body size, and body condition? roe deer as a case study. Ecography 29: 301-308. https://doi.org/10.1111/j.2006.0906-7590.04394.x
  7. Clutton-Brock, T.H. 2007. Sexual selection in males and females. Science 318: 1882-1885. https://doi.org/10.1126/science.1133311
  8. Cox, R.M., Skelly, S.I. and John-Alder, H.B. 2003. A comparative test of adaptive hypotheses for sexual size dimorphism in lizards. Evolution 57: 1653-1669. https://doi.org/10.1111/j.0014-3820.2003.tb00371.x
  9. Don, B.A.C. 1983. Home range characteristics and correlates in tree squirrels. Mammal Review 13: 123-32. https://doi.org/10.1111/j.1365-2907.1983.tb00273.x
  10. Fokidis, H.B., Risch, T.S. and Glenn, T.C. 2007. Reproductive and resource benefits to large female body size in a mammal exhibiting female-biased sexual size dimorphism. Animal Behavior 73: 479-488. https://doi.org/10.1016/j.anbehav.2006.08.010
  11. Goodman, S.M., Maminirina, C.P., Bradman, H.M., Christidis, L. and Appleton, B.R. 2009. Patterns of morphological and genetic variation in the endemic Malagasy bat Miniopterus gleni (Chiroptera: Miniopteridae), with the description of a new species, M. griffithsi. Journal of Zoological Systematics and Evolutionary Research 48: 75-86. https://doi.org/10.1111/j.1439-0469.2009.00524.x
  12. Hayssen, V. 2008. Patterns of body and tail length and body mass in Sciuridae. Journal of Mammalogy 89: 852-873. https://doi.org/10.1644/07-MAMM-A-217.1
  13. Humphries, M.M. and Boutin, S. 1996. Reproductive demands and mass gains: a paradox in female red squirrels (Tamiasciurus hudsonicus). Journal of Animal Ecology 65: 332-338. https://doi.org/10.2307/5879
  14. Kemp, T.S. 2005. The origin and evolution of mammals. Oxford University Press, Oxford, U.K. pp. 344.
  15. Lowery, G.H. 1974. The mammals of Louisiana and its adjacent waters. Louisiana State University Press, Baton Rouge, U.S.A. pp. 565.
  16. Lucas, A.W., Vermeulen, M., Dongen, S.V., Bertolino, S., Molinari, A., Tosi, G. and Matthysen, E. 2007. Effect of spatio-temporal variation in food supply on red squirrel Sciurus vulgaris body size and body mass and its consequences for some fitness components. Ecography 30: 51-65. https://doi.org/10.1111/j.0906-7590.2007.04646.x
  17. Nandini, R. 2011. Evolution of sexual size dimorphism in squirrels. (Ph.D Dissertation). Alabama. Auburn University.
  18. NIBR (National Institute of Biological Resources). 2012. Red data book of endangered mammals in Korea. National Institute of Biological Resources. Incheon, Republic of Korea. pp. 111.
  19. Ohdachi, S.D., Ishibashi, Y., Iwasa, M.A., Fukui, D. and Saitoh, T. 2015. The Wild Mammals of Japan. 2nd Ed. Shoukadoh Book Sellers. Kyoto, Japan. pp. 511.
  20. Robins, J.H. 2006. Morphological aspects of geographic variation in new world flying squirrels (Genus: Glaucomys). (Ph.D dissertation). Dekalb. Northern Illinois University.
  21. Rocha, R.G., Ferreira, E., Costa, B., Martins, I., Leite, Y.L., Costa, L. P. and Fonseca, C. 2011. Small mammals of the mid-Araguaia River in central Brazil, with the description of a new species of climbing rat. Zootaxa 2789: 1-34. https://doi.org/10.11646/zootaxa.2789.1.1
  22. Shine, R. 1989. Ecological causes for the evolution of sexual dimorphism: a review of the evidence. Quarterly Review of Biology 64: 419-461. https://doi.org/10.1086/416458
  23. Selonen, V., Painter, J.N., Rantala, S. and Hanski, I.K. 2013. Mating system and reproductive success in the Siberian flying squirrel. Journal of Mammalogy 94: 1266-1273. https://doi.org/10.1644/13-MAMM-A-129
  24. Selonen, V., Wistbacka, R. and Andrea, S. 2016. Sex-specific patterns in body mass and mating system in the Siberian flying squirrel. BMC Zoology 1: 1-9. https://doi.org/10.1186/s40850-016-0003-9
  25. Smith, R. 1999. Statistics of sexual size dimorphism. Journal of Human Evolution 36: 423-459. https://doi.org/10.1006/jhev.1998.0281
  26. Thorington, R.W., Koprowski, J.L., Steele, M.A. and Whatton, J.F. 2012. Squirrels of the world. Johns Hopkins Press. Maryland, U.S.A. pp. 472.
  27. Toïgo, C., Gailard, J., Van Laere, M. Hewison, G. and Morellet, N. 2006. How does environmental variation influence body mass, body size, and body condition? roe deer as a case study. Ecography 29: 301-308. https://doi.org/10.1111/j.2006.0906-7590.04394.x
  28. Wilson, D.E., Cole, F.R., Nichols, J.D., Rudran, R. and Foster, M.S. 1996. Measuring and monitoring biological diversity (standard methods for mammals). Smithsonian Institution Press, Washington D.C., U.S.A. pp. 440.
  29. Winson, D.E., Lacher, T.E. and Mittermeier, R.A. 2016. Handbook of the mammals of the World. Vol 6. Lagomorphs and Rodents I. Lynx Edicions. Barcelona, Spain. pp. 987.