DOI QR코드

DOI QR Code

Coarse Woody Debris (CWD) Respiration Rates of Larix kaempferi and Pinus rigida: Effects of Decay Class and Physicochemical Properties of CWD

일본잎갈나무와 리기다소나무 고사목의 호흡속도: 고사목의 부후등급과 이화학적 특성의 영향

  • Lee, Minkyu (Department of Forest Environment System, Kangwon National University) ;
  • Kwon, Boram (Department of Forest Environment System, Kangwon National University) ;
  • Kim, Sung-geun (Department of Forest Environment System, Kangwon National University) ;
  • Yoon, Tae Kyung (Department of Forest Science, Sangji University) ;
  • Son, Yowhan (Department of Environmental Science and Ecological Engineering, Korea University) ;
  • Yi, Myong Jong (Department of Forest Environment System, Kangwon National University)
  • 이민규 (강원대학교 산림환경시스템학과) ;
  • 권보람 (강원대학교 산림환경시스템학과) ;
  • 김성근 (강원대학교 산림환경시스템학과) ;
  • 윤태경 (상지대학교 산림과학과) ;
  • 손요환 (고려대학교 환경생태공학과) ;
  • 이명종 (강원대학교 산림환경시스템학과)
  • Received : 2019.02.12
  • Accepted : 2019.03.04
  • Published : 2019.03.31

Abstract

Coarse woody debris (CWD), which is a component of the forest ecosystem, plays a major role in forest energy flow and nutrient cycling. In particular, CWD isolates carbon for a long time and is important in terms of slowing the rate of carbon released from the forest to the atmosphere. Therefore, this study measured the physiochemical characteristics and respiration rate ($R_{CWD}$) of CWD for Larix kaempferi and Pinus rigida in temperate forests in central Korea. In summer 2018, CWD samples from decay class (DC) I to IV were collected in the 14 forest stands. $R_{CWD}$ and physiochemical characteristics were measured using a closed chamber with a portable carbon dioxide sensor in the laboratory. In both species, as CWD decomposition progressed, the density ($D_{CWD}$) of the CWD decreased while the water content ($WC_{CWD}$) increased. Furthermore, the carbon concentrations did not significantly differ by DC, whereas the nitrogen concentration significantly increased and the C/N ratio decreased. The respiration rate of L. kaempferi CWD increased significantly up to DC IV, but for P. rigida it increased to DC II and then unchanged for DC II-IV. Accordingly, except for carbon concentration, all the measured characteristics showed a significant correlation with $R_{CWD}$. Multiple linear regression showed that $WC_{CWD}$ was the most influential factor on $R_{CWD}$. $WC_{CWD}$ affects $R_{CWD}$ by increasing microbial activity and is closely related to complex environmental factors such as temperature and light conditions. Therefore, it is necessary to study their correlation and estimate the time-series pattern of CWD moisture.

고사목(CWD)은 산림생태계 구성요소의 하나로서 산림의 에너지 흐름과 물질순환에서 주요한 역할을 한다. 특히 고사목은 탄소를 격리하는 장기 저장고로서, 산림에서 대기로 방출되는 탄소의 속도를 지연시키는 측면에서 고사목의 호흡속도를 구명하는 것은 의의가 크다. 따라서 본 연구는 온대중부지역의 일본잎갈나무와 리기다소나무 고사목을 대상으로 호흡속도를 측정하고, 호흡속도에 영향을 미치는 인자(밀도, 함수율, 탄소농도, 질소농도 및 C/N비)의 영향력을 파악하였다. 2018년 여름, 우리나라 중부지역 14개 임분에서 부후등급 별로 시료를 채취하고, 실험실에서 휴대용 이산화탄소 센서를 부착한 밀폐형 챔버를 이용하여 고사목 호흡을 측정하였다. 두 수종 모두 부후가 진행함에 따라 고사목 밀도는 감소하였으며, 함수율은 증가했다. 또한 탄소농도는 부후등급에 따라 유의성을 나타내지 않았으나, 질소농도는 증가하고 C/N비는 감소하는 경향을 보였다. 일본잎갈나무의 경우 부후 IV등급까지 고사목의 호흡속도가 유의하게 증가하였지만, 리기다소나무에서는 부후 II등급까지 증가 후 평형상태를 보였다. 따라서 탄소농도를 제외하고, 모든 인자들이 호흡속도와 유의한 상관관계를 나타냈으며, 단계적 회귀분석의 결과, 두 수종 모두 함수율이 고사목 호흡속도에 가장 영향을 미치는 인자로 나타났다. 이와 같이 고사목의 수분은 미생물의 활성도를 높여 호흡속도에 영향을 미치며, 온도와 광 환경 등 복잡하게 연결된 환경인자들과 밀접한 관계에 있으므로 향후 이들의 상호관계 및 수분의 시계열적패턴 추정에 대한 지속적인 연구가 필요하다.

Keywords

HOMHBJ_2019_v108n1_40_f0001.png 이미지

Figure 1. Locations of sampling sites for coarse woody debris (CWD) across central Korea.

HOMHBJ_2019_v108n1_40_f0002.png 이미지

Figure 2. Carbon concentration (a), nitrogen concentrations (b), and C/N ratio (c) of coarse woody debris(CWD) of Larix kaempferi (closed triangles) and Pinus rigida (open square) by decay classes from I to IV. Means with different letters are significantly different (p < 0.05) between decay classes as determined by Duncan’s multiple range test (capital letters: Pinus rigida, small letters: Larix kaempferi). Significant difference between species are indicated by an asterisk. Bars indicate standard deviations.

HOMHBJ_2019_v108n1_40_f0003.png 이미지

Figure 3. Relationships between wood density (DCWD) and respiration rate of CWD (RCWD) (a, b), and between water content (WCCWD) and RCWD (c, d) for Larix kaempferi (a, c) and Pinus rigida (b, d). The different point shapes represent the decay classes of CWD.

HOMHBJ_2019_v108n1_40_f0004.png 이미지

Figure 4. Relationship between carbon concentrations and RCWD (a, b), between nitrogen concentrations and RCWD (c, d), and between C/N ratio and RCWD (e, f) of Larix kaempferi (a, c, e) and Pinus rigida (b, d, f). The different point shapes represent the decay classes of CWD.

HOMHBJ_2019_v108n1_40_f0005.png 이미지

Figure 5. Standardized coefficients (β) of density (DCWD), water content (WCCWD), carbon concentration (Carbon), nitrogen concentration (Nitrogen), and carbon to nitrogen ratio (C/N ratio) for the respiration rate (RCWD) observed at decay classes of coarse woody debris (CWD) of Larix kaempfri and Pinus rigida. The standard coefficients are the estimates resulting from a multiple regression analysis and refer to how many standard deviation (SDs) a respiration rate will change per SD increase in either the factors. Note that the predictors without statistical significance (p>0.05) are not presented.

Table 1. Qualitative classification systems for coarse woody debris (CWD) into four decay classes.*

HOMHBJ_2019_v108n1_40_t0001.png 이미지

Table 2. Result from the two-way ANOVA on the effects of species and decay classes CWD on respiration rate (RCWD) and physicochemical properties (DCWD; density, WCCWD; water contents, carbon, nitrogen and C/N ratio) of CWD from Larix kaempferi and Pinus rigida. Significantly different values are bolded.

HOMHBJ_2019_v108n1_40_t0002.png 이미지

Table 3. Physical characteristics (DCWD; density, WCCWD; water contents) and respiration rate (RCWD) of coarse woody debris (CWD) samples.

HOMHBJ_2019_v108n1_40_t0003.png 이미지

References

  1. Berg, B. 1988. Dynamics of nitrogen ($^{15}N$) in decomposing Scots pine (Pinus sylvestris) needle litter: Long-term decomposition in a scots pine forest. Canadian Journal of Botany 66(8): 1539-1546. https://doi.org/10.1139/b88-212
  2. Boddy, L. and Watkinson, S.C. 1995. Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany 73(S1): 1377-1383. https://doi.org/10.1139/b95-400
  3. Bond-Lamberty, B., Wang, C. and Gower, S.T. 2003. Annual carbon flux from woody debris for a boreal black spruce fire chronosequence. Journal of Geophysical Research 108(D3): 8220.
  4. Carmona, M.R., Armesto, J.J., Aravena, J.C. and Perez, C.A. 2002. Coarse woody debris biomass in successional and primary temperate forests in Chiloe' Island, Chile. Forest Ecology and Management 164: 265-275. https://doi.org/10.1016/S0378-1127(01)00602-8
  5. Chamber, J.Q., Schimel, J.P. and Nobre, A.D. 2001. Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52: 115-131. https://doi.org/10.1023/A:1006473530673
  6. Clark, D.B., Clark, D.A., Brown, S., Oberbauer, S.F. and Veldkamp, E. 2002. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management 164: 237-248. https://doi.org/10.1016/S0378-1127(01)00597-7
  7. Creed, I.F., Webster, K.L. and Morrison, D.L. 2004. A comparison of techniques for measuring density and concentrations of carbon and nitrogen in coarse woody debris at different stages of decay. Natural Resources Canada 34: 744-753.
  8. Downs, M.R., Nadelhoffer, K.J., Melillo, J.M. and Aber, J.D., 1996. Immobilization of a $^{15}N$ labelled-nitrater addition by decomposing forest litter. Oecologia 105: 141-150. https://doi.org/10.1007/BF00328539
  9. Forrester, J.A., Mladenoff, D.J., Gower, S.T. and Stoffel, J.L. 2012. Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. Forest Ecology and Management 265: 124-132. https://doi.org/10.1016/j.foreco.2011.10.038
  10. Ganjeguntea , K.G., Condrona, L.M., Clintonb, P.W., Davisb, M.R. and Mahieu, N. 2004. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management 187: 197-211. https://doi.org/10.1016/S0378-1127(03)00332-3
  11. Gough, C.M., Vogel, C.S., Kazanski, C., Nagel, L., Flower, C.E. and Curtis, P.S. 2007. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology and Management 244: 60-67. https://doi.org/10.1016/j.foreco.2007.03.039
  12. Hagemann, U., Moroni, M.T., GleiBner, J. and Makeschin, F. 2010. Disturbance history influences downed woody debris and soil respiration. Forest Ecology and Management 260: 1762-1772. https://doi.org/10.1016/j.foreco.2010.08.018
  13. Harmon, M.E., Bible, K., Ryan, M.G., Shaw, D.C., Chen, H., Klopatek, J. and Li, X. 2004. Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem. Ecosystems 7: 498-512. https://doi.org/10.1007/s10021-004-0140-9
  14. Harmon, M.E., Fasth, B., Woodall, C.W. and Sexton, J. 2013. Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type. Forest Ecology and Management 291: 259-267. https://doi.org/10.1016/j.foreco.2012.11.046
  15. Howard, E.A., Gower, S.T., Foley, J.A and Kucharik, C.J. 2004. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada. Global Change Biology 10(7): 1267-1284. https://doi.org/10.1111/j.1529-8817.2003.00804.x
  16. Hua, C. and Zhenbang, X. 1992. Composition and storage of fallen trees and snags in Korean Pine-deciduous mixed forest at Changbai mountain. Chinese Journal of Ecology 11(1): 17-22.
  17. IPCC (Intergovernmental Panel on Climate Change). 2006. IPCC Guidelines for national greenhouse gas inventory. IPCC/IGES. Hayama, Japan.
  18. Jomura, M., Kominami, Y., Dannoura, M. and Kanazawa, Y. 2008. Spatial variation in respiration from coarse woody debris in a temperate secondary broad-leaved forest in Japan. Forest Ecology and Management 255: 149-155. https://doi.org/10.1016/j.foreco.2007.09.002
  19. Korea Forest Service. 2010. Carbon emission factors of major trees for forest greenhouse gas inventories. (Project number: 11-1400377-000394-01). Korea forest research institute. pp. 34.
  20. Korea Forest Service. 2018. http://map.forest.go.kr/forest/?systype=mapSearch&searchOption=stock#/. (2018.05.30.).
  21. Kim, R.H. and Son, Y.H. 2002. Coarse woody debris (CWD) in forest ecosystem. Life Science and Natural Resources 10: 50-67.
  22. Kim, S.G., Kwon, B.R., Son, Y.H. and Yi, M.J. 2018. Carbon storage in an age-sequence of temperate Quercus mongolica stands in cenrtal Korea. Journal of Forest and Environmental Science 34(6):472-480. https://doi.org/10.7747/JFES.2018.34.6.472
  23. Klockow, P.A., D'Amato, A.W., Bradford, J.B. and Fraver, S. 2014. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides michx. - dominated forest, northern Minnesota, USA. Silva Fennica 48(1): 962.
  24. Laiho, R. and Prescott, C.E. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research 34(4): 763-777. https://doi.org/10.1139/x03-241
  25. Lee S.J., Yim, J.S., Son, Y.M., Son, Y.H. and Kim, R.H. 2018. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in South Korea. Forests 9(10): 625; doi:10.3390/f9100625.
  26. Lim, H.W., Choi, W.J., Ahn, K.W. and Lee, K.H. 2012. Ecosystem respiration and tree growth influenced by thinning in a red pine forest in southern Korea. Forest Science and Technology 8(4): 192-204. https://doi.org/10.1080/21580103.2012.704977
  27. Mackensen, J. and Bauhus, J. 2003. Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata. Soil Biology & Biochemistry 35: 177-186. https://doi.org/10.1016/S0038-0717(02)00255-9
  28. Noh, N.J., Son, Y.H., Lee, S.K., Seo, K.W., Heo, S.J., Yi, M.J., Park, P.S., Kim, R.H., Son, Y.M. and Lee, K.H. 2010. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Science China Life Sciences 53(7): 822-830. https://doi.org/10.1007/s11427-010-4018-0
  29. Noh, N.J., Yoon, T.K., Kim, R.H., Bolton, N.W., Kim, C.S. and Son, Y.H. 2017. Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine (Pinus densiflora S. et Z.). Forest 8(6): 214; doi:10.3390/f8060214.
  30. Olajuyigbe, S., Tobin, B. and Nieuwenhuis, M. 2012. Temperature and moisture effects on respiration rate of decomposing logs in a Sitka spruce plantation in Ireland. Forestry 85(4): 485-496. https://doi.org/10.1093/forestry/CPS045
  31. Pan, Y., Richard, A.B., Fang, j., Houghton, R., Kauppi, P.E., Kurz, P.E., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., Mcguire, A.D., Pio, S., Rautiainen, A., Sitch, S. and Hayes, D. 2011. A Large and Persistent Carbon Sink in the World's Forests. Science 333(6045): 988-993. https://doi.org/10.1126/science.1201609
  32. Palviainen, M., Finer, L., Laiho, R., Shorohova, E., Kapitsa, E. and Majamaa, V. 2010.[HTML] Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecology and Management 259(3): 390-398. https://doi.org/10.1016/j.foreco.2009.10.034
  33. Petrillo, M., Cherubini, P., Sartori, G., Abiven, S., Ascher, J., Bertoldi, D., Camin, F., Barbero, A., Larcher, R. and Egli, M. 2015. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting. Biogeosciences and Forestry 9: 154-164.
  34. Progar, R.A., Schowalter, T.D., Freitag, C.M. and Morrell, J.J. 2000. Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon. Oecologia 124: 426-431. https://doi.org/10.1007/PL00008868
  35. Schuur, E.A.G., Chadwick. O.A. and Matson P.A. 2001. Carbon cycling and soil carbon storage on mesic to wet Hawiian montane forests. Ecology 82(11): 3182-3196. https://doi.org/10.1890/0012-9658(2001)082[3182:CCASCS]2.0.CO;2
  36. Seedre, M., Taylor, A.R., Chen, H.Y.H and Jogiste, K. 2013. Deadwood density of five boreal tree species in relation to field-assigned decay class. Forest Science 59(3): 261-266. https://doi.org/10.5849/forsci.11-157
  37. Snowdon, P., Ryan, P. and Raison, J. 2005. Review of C/N ratios in vegetation, litter and soil under Australian native forests and plantations. Australian Greenhouse Office (45): 57.
  38. Son, Y.M., Jeon, J.H., Lee, S.J., Yim, J.S. and Kang, J.T. 2017. Development of estimated equation for mortality rates by forest type in Korea. Journal of Korean Forest Society 106(4): 450-456.
  39. Sprugel, D.G. 1990. Components of woody-tissue respiration in young Abies amabilis (Dougl.) forest trees. Trees 4: 88-98. https://doi.org/10.1007/BF00226071
  40. Stevens and Victoria. 1997. The ecological role of coarse woody debris: an overview of the ecological importance of CWD in B.C. forests. Research Branch, British Columbia Ministry of Forests, Victoria.
  41. Wang, C., Bond-Lamberty, B. and Gower, S.T. 2002. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132: 374-381. https://doi.org/10.1007/s00442-002-0987-4
  42. Waring, R.H. and Schlesinger, W.H. 1985. Forest ecosystems: concepts and management. Academic Press Inc., Orlando, San Diego. ISBN 978-01-2735-440-8.
  43. Wu, J., Zhang, X., Wang, H., Sun, J. and Guan, D. 2010. Respiration of downed logs in an old-growth temperate forest in north-eastern China. Scandinavian Journal of Forest Research 25: 500-506. https://doi.org/10.1080/02827581.2010.524166
  44. Yoneda, T. 1975. Studies on the rate of decay of wood litter on the forest floor dry weight loss and $CO_2$ evolution of decaying wood. The Ecological Society of Japan 25(3): 132-140.
  45. Yoon, T.K., Han, S., Lee, D., Han, S.H., Noh, N.J. and Son, Y.H. 2014. Effects of sample size and temperature on coarse woody debris respiration from Quercus variabilis logs. Journal of Forest Research 19: 249-259. https://doi.org/10.1007/s10310-013-0412-3
  46. Yoon, T.K., Noh, N.J., Kim, S.J., Han, S.R. and Son, Y.H. 2015. Coarse woody debris respiration of Japanese red pine forests in Korea: controlling factors and contribution to the ecosystem carbon cycle. Ecological Research 30(4): 723-734. https://doi.org/10.1007/s11284-015-1275-1
  47. Yuan, J., Hou, L., Wei, X., Shang, Z., Cheng, F. and Zhang, S. 2017. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China. PLoS ONE 12(4): e0175203. https://doi.org/10.1371/journal.pone.0175203
  48. Zhou, L., Dai, L., Gu, H. and Zhong, L. 2007. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forestry Research 18: 48-54. https://doi.org/10.1007/s11676-007-0009-9