Figure 1. Locations of sampling sites for coarse woody debris (CWD) across central Korea.
Figure 2. Carbon concentration (a), nitrogen concentrations (b), and C/N ratio (c) of coarse woody debris(CWD) of Larix kaempferi (closed triangles) and Pinus rigida (open square) by decay classes from I to IV. Means with different letters are significantly different (p < 0.05) between decay classes as determined by Duncan’s multiple range test (capital letters: Pinus rigida, small letters: Larix kaempferi). Significant difference between species are indicated by an asterisk. Bars indicate standard deviations.
Figure 3. Relationships between wood density (DCWD) and respiration rate of CWD (RCWD) (a, b), and between water content (WCCWD) and RCWD (c, d) for Larix kaempferi (a, c) and Pinus rigida (b, d). The different point shapes represent the decay classes of CWD.
Figure 4. Relationship between carbon concentrations and RCWD (a, b), between nitrogen concentrations and RCWD (c, d), and between C/N ratio and RCWD (e, f) of Larix kaempferi (a, c, e) and Pinus rigida (b, d, f). The different point shapes represent the decay classes of CWD.
Figure 5. Standardized coefficients (β) of density (DCWD), water content (WCCWD), carbon concentration (Carbon), nitrogen concentration (Nitrogen), and carbon to nitrogen ratio (C/N ratio) for the respiration rate (RCWD) observed at decay classes of coarse woody debris (CWD) of Larix kaempfri and Pinus rigida. The standard coefficients are the estimates resulting from a multiple regression analysis and refer to how many standard deviation (SDs) a respiration rate will change per SD increase in either the factors. Note that the predictors without statistical significance (p>0.05) are not presented.
Table 1. Qualitative classification systems for coarse woody debris (CWD) into four decay classes.*
Table 2. Result from the two-way ANOVA on the effects of species and decay classes CWD on respiration rate (RCWD) and physicochemical properties (DCWD; density, WCCWD; water contents, carbon, nitrogen and C/N ratio) of CWD from Larix kaempferi and Pinus rigida. Significantly different values are bolded.
Table 3. Physical characteristics (DCWD; density, WCCWD; water contents) and respiration rate (RCWD) of coarse woody debris (CWD) samples.
References
-
Berg, B. 1988. Dynamics of nitrogen (
$^{15}N$ ) in decomposing Scots pine (Pinus sylvestris) needle litter: Long-term decomposition in a scots pine forest. Canadian Journal of Botany 66(8): 1539-1546. https://doi.org/10.1139/b88-212 - Boddy, L. and Watkinson, S.C. 1995. Wood decomposition, higher fungi, and their role in nutrient redistribution. Canadian Journal of Botany 73(S1): 1377-1383. https://doi.org/10.1139/b95-400
- Bond-Lamberty, B., Wang, C. and Gower, S.T. 2003. Annual carbon flux from woody debris for a boreal black spruce fire chronosequence. Journal of Geophysical Research 108(D3): 8220.
- Carmona, M.R., Armesto, J.J., Aravena, J.C. and Perez, C.A. 2002. Coarse woody debris biomass in successional and primary temperate forests in Chiloe' Island, Chile. Forest Ecology and Management 164: 265-275. https://doi.org/10.1016/S0378-1127(01)00602-8
- Chamber, J.Q., Schimel, J.P. and Nobre, A.D. 2001. Respiration from coarse wood litter in central Amazon forests. Biogeochemistry 52: 115-131. https://doi.org/10.1023/A:1006473530673
- Clark, D.B., Clark, D.A., Brown, S., Oberbauer, S.F. and Veldkamp, E. 2002. Stocks and flows of coarse woody debris across a tropical rain forest nutrient and topography gradient. Forest Ecology and Management 164: 237-248. https://doi.org/10.1016/S0378-1127(01)00597-7
- Creed, I.F., Webster, K.L. and Morrison, D.L. 2004. A comparison of techniques for measuring density and concentrations of carbon and nitrogen in coarse woody debris at different stages of decay. Natural Resources Canada 34: 744-753.
-
Downs, M.R., Nadelhoffer, K.J., Melillo, J.M. and Aber, J.D., 1996. Immobilization of a
$^{15}N$ labelled-nitrater addition by decomposing forest litter. Oecologia 105: 141-150. https://doi.org/10.1007/BF00328539 - Forrester, J.A., Mladenoff, D.J., Gower, S.T. and Stoffel, J.L. 2012. Interactions of temperature and moisture with respiration from coarse woody debris in experimental forest canopy gaps. Forest Ecology and Management 265: 124-132. https://doi.org/10.1016/j.foreco.2011.10.038
- Ganjeguntea , K.G., Condrona, L.M., Clintonb, P.W., Davisb, M.R. and Mahieu, N. 2004. Decomposition and nutrient release from radiata pine (Pinus radiata) coarse woody debris. Forest Ecology and Management 187: 197-211. https://doi.org/10.1016/S0378-1127(03)00332-3
- Gough, C.M., Vogel, C.S., Kazanski, C., Nagel, L., Flower, C.E. and Curtis, P.S. 2007. Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology and Management 244: 60-67. https://doi.org/10.1016/j.foreco.2007.03.039
- Hagemann, U., Moroni, M.T., GleiBner, J. and Makeschin, F. 2010. Disturbance history influences downed woody debris and soil respiration. Forest Ecology and Management 260: 1762-1772. https://doi.org/10.1016/j.foreco.2010.08.018
- Harmon, M.E., Bible, K., Ryan, M.G., Shaw, D.C., Chen, H., Klopatek, J. and Li, X. 2004. Production, respiration, and overall carbon balance in an old-growth Pseudotsuga-Tsuga forest ecosystem. Ecosystems 7: 498-512. https://doi.org/10.1007/s10021-004-0140-9
- Harmon, M.E., Fasth, B., Woodall, C.W. and Sexton, J. 2013. Carbon concentration of standing and downed woody detritus: Effects of tree taxa, decay class, position, and tissue type. Forest Ecology and Management 291: 259-267. https://doi.org/10.1016/j.foreco.2012.11.046
- Howard, E.A., Gower, S.T., Foley, J.A and Kucharik, C.J. 2004. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada. Global Change Biology 10(7): 1267-1284. https://doi.org/10.1111/j.1529-8817.2003.00804.x
- Hua, C. and Zhenbang, X. 1992. Composition and storage of fallen trees and snags in Korean Pine-deciduous mixed forest at Changbai mountain. Chinese Journal of Ecology 11(1): 17-22.
- IPCC (Intergovernmental Panel on Climate Change). 2006. IPCC Guidelines for national greenhouse gas inventory. IPCC/IGES. Hayama, Japan.
- Jomura, M., Kominami, Y., Dannoura, M. and Kanazawa, Y. 2008. Spatial variation in respiration from coarse woody debris in a temperate secondary broad-leaved forest in Japan. Forest Ecology and Management 255: 149-155. https://doi.org/10.1016/j.foreco.2007.09.002
- Korea Forest Service. 2010. Carbon emission factors of major trees for forest greenhouse gas inventories. (Project number: 11-1400377-000394-01). Korea forest research institute. pp. 34.
- Korea Forest Service. 2018. http://map.forest.go.kr/forest/?systype=mapSearch&searchOption=stock#/. (2018.05.30.).
- Kim, R.H. and Son, Y.H. 2002. Coarse woody debris (CWD) in forest ecosystem. Life Science and Natural Resources 10: 50-67.
- Kim, S.G., Kwon, B.R., Son, Y.H. and Yi, M.J. 2018. Carbon storage in an age-sequence of temperate Quercus mongolica stands in cenrtal Korea. Journal of Forest and Environmental Science 34(6):472-480. https://doi.org/10.7747/JFES.2018.34.6.472
- Klockow, P.A., D'Amato, A.W., Bradford, J.B. and Fraver, S. 2014. Nutrient concentrations in coarse and fine woody debris of Populus tremuloides michx. - dominated forest, northern Minnesota, USA. Silva Fennica 48(1): 962.
- Laiho, R. and Prescott, C.E. 2004. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis. Canadian Journal of Forest Research 34(4): 763-777. https://doi.org/10.1139/x03-241
- Lee S.J., Yim, J.S., Son, Y.M., Son, Y.H. and Kim, R.H. 2018. Estimation of forest carbon stocks for national greenhouse gas inventory reporting in South Korea. Forests 9(10): 625; doi:10.3390/f9100625.
- Lim, H.W., Choi, W.J., Ahn, K.W. and Lee, K.H. 2012. Ecosystem respiration and tree growth influenced by thinning in a red pine forest in southern Korea. Forest Science and Technology 8(4): 192-204. https://doi.org/10.1080/21580103.2012.704977
- Mackensen, J. and Bauhus, J. 2003. Density loss and respiration rates in coarse woody debris of Pinus radiata, Eucalyptus regnans and Eucalyptus maculata. Soil Biology & Biochemistry 35: 177-186. https://doi.org/10.1016/S0038-0717(02)00255-9
- Noh, N.J., Son, Y.H., Lee, S.K., Seo, K.W., Heo, S.J., Yi, M.J., Park, P.S., Kim, R.H., Son, Y.M. and Lee, K.H. 2010. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea. Science China Life Sciences 53(7): 822-830. https://doi.org/10.1007/s11427-010-4018-0
- Noh, N.J., Yoon, T.K., Kim, R.H., Bolton, N.W., Kim, C.S. and Son, Y.H. 2017. Carbon and nitrogen accumulation and decomposition from coarse woody debris in a naturally regenerated Korean red pine (Pinus densiflora S. et Z.). Forest 8(6): 214; doi:10.3390/f8060214.
- Olajuyigbe, S., Tobin, B. and Nieuwenhuis, M. 2012. Temperature and moisture effects on respiration rate of decomposing logs in a Sitka spruce plantation in Ireland. Forestry 85(4): 485-496. https://doi.org/10.1093/forestry/CPS045
- Pan, Y., Richard, A.B., Fang, j., Houghton, R., Kauppi, P.E., Kurz, P.E., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., Mcguire, A.D., Pio, S., Rautiainen, A., Sitch, S. and Hayes, D. 2011. A Large and Persistent Carbon Sink in the World's Forests. Science 333(6045): 988-993. https://doi.org/10.1126/science.1201609
- Palviainen, M., Finer, L., Laiho, R., Shorohova, E., Kapitsa, E. and Majamaa, V. 2010.[HTML] Carbon and nitrogen release from decomposing Scots pine, Norway spruce and silver birch stumps. Forest Ecology and Management 259(3): 390-398. https://doi.org/10.1016/j.foreco.2009.10.034
- Petrillo, M., Cherubini, P., Sartori, G., Abiven, S., Ascher, J., Bertoldi, D., Camin, F., Barbero, A., Larcher, R. and Egli, M. 2015. Decomposition of Norway spruce and European larch coarse woody debris (CWD) in relation to different elevation and exposure in an Alpine setting. Biogeosciences and Forestry 9: 154-164.
- Progar, R.A., Schowalter, T.D., Freitag, C.M. and Morrell, J.J. 2000. Respiration from coarse woody debris as affected by moisture and saprotroph functional diversity in Western Oregon. Oecologia 124: 426-431. https://doi.org/10.1007/PL00008868
- Schuur, E.A.G., Chadwick. O.A. and Matson P.A. 2001. Carbon cycling and soil carbon storage on mesic to wet Hawiian montane forests. Ecology 82(11): 3182-3196. https://doi.org/10.1890/0012-9658(2001)082[3182:CCASCS]2.0.CO;2
- Seedre, M., Taylor, A.R., Chen, H.Y.H and Jogiste, K. 2013. Deadwood density of five boreal tree species in relation to field-assigned decay class. Forest Science 59(3): 261-266. https://doi.org/10.5849/forsci.11-157
- Snowdon, P., Ryan, P. and Raison, J. 2005. Review of C/N ratios in vegetation, litter and soil under Australian native forests and plantations. Australian Greenhouse Office (45): 57.
- Son, Y.M., Jeon, J.H., Lee, S.J., Yim, J.S. and Kang, J.T. 2017. Development of estimated equation for mortality rates by forest type in Korea. Journal of Korean Forest Society 106(4): 450-456.
- Sprugel, D.G. 1990. Components of woody-tissue respiration in young Abies amabilis (Dougl.) forest trees. Trees 4: 88-98. https://doi.org/10.1007/BF00226071
- Stevens and Victoria. 1997. The ecological role of coarse woody debris: an overview of the ecological importance of CWD in B.C. forests. Research Branch, British Columbia Ministry of Forests, Victoria.
- Wang, C., Bond-Lamberty, B. and Gower, S.T. 2002. Environmental controls on carbon dioxide flux from black spruce coarse woody debris. Oecologia 132: 374-381. https://doi.org/10.1007/s00442-002-0987-4
- Waring, R.H. and Schlesinger, W.H. 1985. Forest ecosystems: concepts and management. Academic Press Inc., Orlando, San Diego. ISBN 978-01-2735-440-8.
- Wu, J., Zhang, X., Wang, H., Sun, J. and Guan, D. 2010. Respiration of downed logs in an old-growth temperate forest in north-eastern China. Scandinavian Journal of Forest Research 25: 500-506. https://doi.org/10.1080/02827581.2010.524166
-
Yoneda, T. 1975. Studies on the rate of decay of wood litter on the forest floor dry weight loss and
$CO_2$ evolution of decaying wood. The Ecological Society of Japan 25(3): 132-140. - Yoon, T.K., Han, S., Lee, D., Han, S.H., Noh, N.J. and Son, Y.H. 2014. Effects of sample size and temperature on coarse woody debris respiration from Quercus variabilis logs. Journal of Forest Research 19: 249-259. https://doi.org/10.1007/s10310-013-0412-3
- Yoon, T.K., Noh, N.J., Kim, S.J., Han, S.R. and Son, Y.H. 2015. Coarse woody debris respiration of Japanese red pine forests in Korea: controlling factors and contribution to the ecosystem carbon cycle. Ecological Research 30(4): 723-734. https://doi.org/10.1007/s11284-015-1275-1
- Yuan, J., Hou, L., Wei, X., Shang, Z., Cheng, F. and Zhang, S. 2017. Decay and nutrient dynamics of coarse woody debris in the Qinling Mountains, China. PLoS ONE 12(4): e0175203. https://doi.org/10.1371/journal.pone.0175203
- Zhou, L., Dai, L., Gu, H. and Zhong, L. 2007. Review on the decomposition and influence factors of coarse woody debris in forest ecosystem. Journal of Forestry Research 18: 48-54. https://doi.org/10.1007/s11676-007-0009-9