DOI QR코드

DOI QR Code

Effect of the Thermal Etching Temperature and SiO2/Al2O3 Ratio of Flexible Zeolite Fibers on the Adsorption/desorption Characteristics of Toluene

  • Ji, Sang Hyun (Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Yun, Ji Sun (Energy & Environmental Division, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2019.01.21
  • Accepted : 2019.02.14
  • Published : 2019.03.27

Abstract

To develop flexible adsorbents for compact volatile organic compound (VOC) air purifiers, flexible as-spun zeolite fibers are prepared by an electrospinning method, and then zeolite particles are exposed as active sites for VOC (toluene) adsorption on the surface of the fibers by a thermal surface partial etching process. The breakthrough curves for the adsorption and temperature programmed desorption (TPD) curves of toluene over the flexible zeolite fibers is investigated as a function of the thermal etching temperature by gas chromatography (GC), and the adsorption/desorption characteristics improves with an increase in the thermal surface etching temperature. The effect of acidity on the flexible zeolite fibers for the removal of toluene is investigated as a function of the $SiO_2/Al_2O_3$ ratios of zeolites. The acidity of the flexible zeolite fibers with different $SiO_2/Al_2O_3$ ratios is measured by ammonia-temperature-programmed desorption ($NH_3-TPD$), and the adsorption/desorption characteristics are investigated by GC. The results of the toluene adsorption/desorption experiments confirm that a higher $SiO_2/Al_2O_3$ ratio of the flexible zeolite fibers creates a better toluene adsorption/desorption performance.

Keywords

References

  1. J. J. Spivey, Ind. Eng. Chem. Res., 26, 2167 (1987). https://doi.org/10.1021/ie00071a001
  2. P.-O. Larsson, A. Andersson, L. R. Wallenberg and B. Svensson, J. Catal., 163, 279 (1996). https://doi.org/10.1006/jcat.1996.0329
  3. W. B. Li, J. X. Wang and H. Gong, Catal. Today, 148, 81 (2009). https://doi.org/10.1016/j.cattod.2009.03.007
  4. K.-J. Kim and H.-G. Ahn, Micropor. Mesopor. Mat., 152, 78 (2012). https://doi.org/10.1016/j.micromeso.2011.11.051
  5. H. Zaitan, A. Korrir, T. Chafik and D. Bianchi, J. Hazard. Mater., 262, 365 (2013). https://doi.org/10.1016/j.jhazmat.2013.08.071
  6. S. C. Shekar, K. Soni, R. Bunkar, M. Sharma, B. Singh, M. V. S. Suryanarayana and R. Vijayaraghavan, Appl. Catal., B, 103, 11 (2011). https://doi.org/10.1016/j.apcatb.2010.12.048
  7. M. Hussain, N. Russo and G. Saracco, Chem. Eng., 166, 138 (2011). https://doi.org/10.1016/j.cej.2010.10.040
  8. S. Mudliar, B. Giri, K. Padoley, D. Satpute, R. Dixit, P. Bhatt, R. Pandet, A. Juwarkar and A. Vaiday, J. Environ. Manage., 91, 1039 (2010). https://doi.org/10.1016/j.jenvman.2010.01.006
  9. X. S. Zhao, Q. Ma and G. Q. Lu, Energ. Fuel., 12, 1051 (1998). https://doi.org/10.1021/ef980113s
  10. H. An, B. Feng and S. Su, Int. J. Greenhouse Gas Control., 5, 16 (2011). https://doi.org/10.1016/j.ijggc.2010.03.007
  11. S. Brosillon, M.-H. Manero and J.-N. Foussard, Environ. Sci. Technol., 35, 3571 (2001). https://doi.org/10.1021/es010017x
  12. P. Navarri, D. Marchal and A. Ginestet, Filtr. Sep., 38, 33 (2001). https://doi.org/10.1016/S0015-1882(01)80150-6
  13. S. H. Ji, J. H. Cho, Y. H. Jeong, J. D. Yun and J. S. Yun, Appl. Surf. Sci., 416, 178 (2017). https://doi.org/10.1016/j.apsusc.2017.04.077
  14. W. Wibowo, M. Rokhmat, K. Sutisna and M. Abdullah, Desalination, 409, 146 (2017). https://doi.org/10.1016/j.desal.2017.01.026
  15. J. H. C. Van Hooff and J. W. Roelofsen, Stud. Surf. Sci. Catal., 58, 241 (1990).