DOI QR코드

DOI QR Code

Evaluation of Microstructure, Phases, and Mechanical Properties of Aged Porcelain Insulator

  • Cho, Jun-Young (Department of Materials Science and Engineering, Seoul National University) ;
  • Jin, Woo-Chan (Department of Materials Science and Engineering, Seoul National University) ;
  • Bae, Sung-Hwan (Nano Materials Science and Engineering, Kyungnam University) ;
  • Park, Chan (Department of Materials Science and Engineering, Seoul National University)
  • Received : 2018.12.19
  • Accepted : 2019.01.18
  • Published : 2019.03.27

Abstract

The microstructure, phase, and mechanical properties of three aged porcelain insulators which were manufactured in different years (1973, 1995 and 2008) and which were used in the field for different amounts of time, were investigated. With X-ray 3D computed tomography (CT), defects with ~mm size can be detected without destroying the aged insulators. Defects of small specimens, which are cut from the aged insulators and polished, are analyzed with optical and scanning electron microscopy (OM and SEM), and defects of um size are detected by OM and SEM. The number and size of defects in all the aged insulators are similar. Porcelain insulators manufactured in 1973 contain more $SiO_2$ (quartz and cristobalite) than those manufactured in 2008. Those manufactured in 2008 contain more $Al_2O_3$ than those manufactured earlier. The Vickers hardness of the insulator manufactured in 1973 has the lowest value. The formation of the cristobalite ($SiO_2$) in the insulator manufactured in 1973 which can come from the phase transformation of quartz can cause stress in the insulator by formation of microcracks, which can lead to the low hardness of the insulator.

Keywords

References

  1. J. S. T. Looms Looms, Insulators for High Voltages, 7th ed., p.1, Peter Peregrinus Ltd., London, UK (1988).
  2. G. Vaillancourt, J. Bellerive, M. St-Jean and C. Jean, IEEE Trans. Power Delivery, 9, 208 (1994). https://doi.org/10.1109/61.277692
  3. X. Wang, S. Kumagai, K. Kobayashi and N. Yoshimura, IEEJ Trans. Fund. Mater., 118, 502 (1998). https://doi.org/10.1541/ieejfms1990.118.5_502
  4. H. M. Schneider, J. F. Hall, G. Karady, and J. Renowden, IEEE Trans. Power Delivery, 4, 2214 (1989). https://doi.org/10.1109/61.35649
  5. P. Lambeth, Proc. Inst. Electr. Eng., 118, 1107 (1971). https://doi.org/10.1049/piee.1971.0245
  6. H. Schneider, W. Guidi, J. Burnham, R. Gorur and J. Hall, IEEE Trans. Power Delivery, 8, 325 (1993). https://doi.org/10.1109/61.180353
  7. G. G. Karady, M. Shah and R. Brown, IEEE Trans. Power Delivery, 10, 1965 (1995). https://doi.org/10.1109/61.473356
  8. E. Cherney, IEEE PAS., 102, 2765 (1983). https://doi.org/10.1109/TPAS.1983.317959
  9. E. Cherney and R. Hooton, IEEE Trans. Power Delivery, 2, 249 (1987). https://doi.org/10.1109/TPWRD.1987.4308096
  10. S. Chandrasekar, C. Kalaivanan, A. Cavallini and G. C. Montanari, IEEE Trans. Dielect. Electr. Insul., 16, 574 (2009). https://doi.org/10.1109/TDEI.2009.4815193
  11. J. Reynders, I. Jandrell and S. Reynders, IEEE Trans. Dielect. Electr. Insul., 6, 620 (1999). https://doi.org/10.1109/94.798119
  12. J. C. Pohlman and C. R. Davis, in 7th Int'l. Conf. Transmission and Distribution Construction and Live Line Maintenance (ESMO-95), p.149, Columbus, OH, USA (1995).
  13. A. Mishra, R. Gorur and S. Venkataraman, IEEE Trans. Dielect. Electr. Insul., 15, 467 (2008). https://doi.org/10.1109/TDEI.2008.4483466
  14. C. Nyamupangedengu, L. Luhlanga and T. Letlape, in IEEE Conf. Power Eng. Soc. Exposition., p.1. Johannesburg, South Africa (2007).
  15. H. Ha, S. Han and J. Lee, IEEE Trans. Instrum. Meas., 61, 267 (2012). https://doi.org/10.1109/TIM.2011.2159322
  16. Y. Cheng, C. Li and B. Liu, in Proc. IEEE 8th Int. Conf. on Properties and Applications of Dielectric Materials., p.615, Bali, Indonesia (2006).
  17. E. Cherney, A. Baker, J. Kuffel, Z. Lodi, A. Phillips, D. Powell and G. Stewart, IEEE Trans. Power Delivery, 29, 275 (2014). https://doi.org/10.1109/TPWRD.2013.2288776
  18. A. Rawat and R. Gorur, IEEE Trans. Dielect. Electr. Insul., 16, 107 (2009). https://doi.org/10.1109/TDEI.2009.4784557
  19. J. Liebermann, Am. Ceram. Soc. Bull., 82, 39 (2003).
  20. P. P. Silva, A. H. Shinohara, A. P. Pacheco, Z. P. Castro Filho and S. L. Monteiro, Mater. Trans., 53, 617 (2012). https://doi.org/10.2320/matertrans.I-M2012802
  21. L. Carbajal, F. Rubio-Marcos, M. Bengochea and J. Fernandez, J. Eur. Ceram. Soc., 27, 4065 (2007). https://doi.org/10.1016/j.jeurceramsoc.2007.02.096
  22. W. M. Carty and B. M. Pinto, Ceram. Eng. Sci. Proc., 23, 95 (2002).
  23. R. A. Islam, Y. C. Chan and M. F. Islam, Mater. Sci. Eng. B, 106, 132 (2004). https://doi.org/10.1016/j.mseb.2003.09.005