DOI QR코드

DOI QR Code

In vitro Multiplication of Hosta Tratt. Species Native to Korea by Shoot-tip Culture

경정배양에 의한 한국 자생 비비추속 식물의 기내증식

  • Choi, Han (Useful Plant Resources Center, Korea National Arboretum) ;
  • Yang, Jong Cheol (Useful Plant Resources Center, Korea National Arboretum) ;
  • Ryu, Sun Hee (Useful Plant Resources Center, Korea National Arboretum) ;
  • Yoon, Sae Mi (Useful Plant Resources Center, Korea National Arboretum) ;
  • Kim, Sang Yong (Useful Plant Resources Center, Korea National Arboretum) ;
  • Lee, Seung Youn (Useful Plant Resources Center, Korea National Arboretum)
  • 최한 (국립수목원 유용식물증식센터) ;
  • 양종철 (국립수목원 유용식물증식센터) ;
  • 류선희 (국립수목원 유용식물증식센터) ;
  • 윤새미 (국립수목원 유용식물증식센터) ;
  • 김상용 (국립수목원 유용식물증식센터) ;
  • 이승연 (국립수목원 유용식물증식센터)
  • Received : 2018.09.15
  • Accepted : 2018.12.28
  • Published : 2019.02.28

Abstract

The purpose of this study was to establish the in vitro propagation system by shoot tip culture of six Hosta species native to Korea (Hosta capitata (Koidz.) Nakai, H. clausa Nakai, H. jonesii M.G.Chung, H. minor (Baker) Nakai, H. venusta F.Maek., and H. yingeri S.B.Jones) for mass proliferation and a new cultivar development. The shoot tips of each Hosta species were cultured on MS medium containing eight combinations of 0.5, 1.0, 2.0, 4.0 mg/L BA with 0.1 mg/L NAA, 0.1, 0.5, 1.0, 2.0 mg/L TDZ with 0.1 mg/L NAA, and without any PGRs (control). They were investigated on callus, somatic embryo, crown bud, differentiation and growth of shoot and root, total fresh weight after 8 weeks of culture. In all six Hosta species, callus and somatic embryo induction rate and multiple shooting rate of the PGRs treatment group were higher than that of the control group. The highest number of differentiated shoots were obtained on medium supplemented with 2.0 ㎎/L TDZ in H. capitata (5.4), 1.0 mg/L TDZ in H. clausa and H. jonesii (3.3 and 5.8, respectively), 0.5 mg/L BA in H. minor (11.1), 1.0 mg/L BA and 0.1 mg/L TDZ in H. venusta (8.1), and 0.5 mg/L TDZ in H. yingeri (9.8). In somatic embryo formation, the PGRs treatment group of H. jonesii and H. yingeri were more effective than the control group, and the effects were relatively less in H. capitata, H. clausa Nakai, H. minor, H. venusta. Crown bud formation of four Hosta species (H.capitata, H. clausa, H. jonesiig, and H. yingeri) were also higher in the PGRs treatment group than in the control group. Crown bud formation of four Hosta species (H.capitata, H. clausa, H. jonesiig, and H. yingeri) were also higher in the PGRs treatment group than in the control group. H. clausa showed no significant effect on callus and shoot differentiation regardless of the type and concentration of cytokinin, but slightly increased in formation of crown bud in TDZ.

본 연구는 우리나라에 자생하고 있는 비비추속 식물 6종(일월비비추, 주걱비비추, 다도해비비추, 좀비비추, 한라비비추, 흑산도비비추)의 정단을 이용하여 대량증식과 품종개발 등을 위한 기내증식체계를 확립하고자 하였다. 정단은 0.5, 1.0, 2.0, 4.0 mg/L BA와 0.1, 0.5, 1.0, 2.0 mg/L TDZ를 0.1 mg/L NAA와 각각 혼용한 조건과 PGRs을 무첨가한 조건(control)의 MS배지에 배양하였다. 배양 8주 후에 embryogenic callus, somatic embryo, crown bud, 그리고 신초와 뿌리의 분화 및 생육, 생체중 등에 대하여 조사하였다. 6종의 비비추 식물 모두에서 control에 비하여 PGRs 처리구의 embryogenic callus와 somatic embryo 형성율, 다신초 분화율이 높았다. 분화된 신초의 개수는 일월비비추는 2.0 mg/L TDZ에서 5.4개, 주걱비비추와 다도해비비추는 1.0 mg/L TDZ에서 각각 3.3개, 5.8개, 좀비비추는 0.5mg/L BA에서 11.1개, 흑산도비비추는 0.5 mg/L TDZ에서 9.8개, 한라비비추는 1.0 mg/L BA, 0.1 mg/L TDZ에서 8.1개로 가장 많았다. Somatic embryo 형성에서는 다도해비비추와 흑산도비비추가 처리한 PGRs에 대해 효과적이었고, 일월비비추, 주걱비비추, 좀비비추, 한라비비추에서는 상대적으로 효과가 적었다. 4종의 자생 비비추(일월비비추, 주걱비비추, 다도해비비추, 흑산도비비추)에서 조사된 crown bud도 control에 비하여 PGRs 처리구에서 더많이 형성되었다. 주걱비비추는 cytokinin의 종류 및 농도와 상관없이 callus와 신초 분화에 큰 효과가 나타나지 않았지만, crown bud의 형성에는 TDZ에서 약간 증가하였다.

Keywords

JOSMBA_2019_v32n1_53_f0001.png 이미지

Fig. 1. Effects of different concentrations and combinations of PGRs on number of somatic embryos (A), number of crown buds (B), number of shoots (C), and length of shoot (D) of in vitro seedlings derived from shoot tip of six Hosta species after 8 weeks of culture. ND, No data.

JOSMBA_2019_v32n1_53_f0002.png 이미지

Fig. 2. Formation of embryogenic callus and somatic embryo (indicated with red arrows) and crown bud (indicated with black arrows) on medium with 0.1 ㎎/L NAA and 1.0 ㎎/L TDZ combination in four Hosta species. Scale bars = 1 ㎜.

JOSMBA_2019_v32n1_53_f0003.png 이미지

Fig. 3. Effects of different concentrations and combinations of PGRs on growth of seedlings derived from shoot tip of six Hosta species after 8 weeks of culture. All media contain NAA 0.1 ㎎/L. Scale bars = 1 ㎝.

Table 1. Abbreviations and source of Hosta species used in this study

JOSMBA_2019_v32n1_53_t0001.png 이미지

Table 2. Effects of different concentrations and combinations of PGRs on in vitro multiplication from shoot tip of six Hosta species after 8 weeks of culture

JOSMBA_2019_v32n1_53_t0002.png 이미지

Table 3. Effects of different concentrations and combinations of PGRs on in vitro rooting of six Hosta species after 8 weeks of culture

JOSMBA_2019_v32n1_53_t0003.png 이미지

References

  1. AHS the Hosta Registry 2018. http://www.hostaregistrar.org/. Accessed 14 September, 2018.
  2. Ahn, M.S., K.H. Choi, G.J. Lee and Y.J. Park. 2007. Selection of optimal cultivars suitable as cut foliage of Hosta spp. Flower Res. J. 15:9-14.
  3. Annapurna, D. and T.S. Rathore. 2010. Direct adventitious shoot induction and plant regeneration of Embelia ribes Burm F. Plant Cell Tiss. Org. Cult. 101:269-277. https://doi.org/10.1007/s11240-010-9684-x
  4. Angiosperm Phylogeny Group. 2009. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161:105-121. https://doi.org/10.1111/j.1095-8339.2009.00996.x
  5. Arab, M.M., A. Yadollahi, A. Shojaeiyan, S. Shokri and S.M. Ghojah. 2014. Effects of nutrient media, different cytokinin types and their concentrations on in vitro multiplication of G${\times}$N15 (hybrid of almond${\times}$peach) vegetative rootstock. J. Genet. Eng. Biotech. 12:81-87. https://doi.org/10.1016/j.jgeb.2014.10.001
  6. Babaei, N., N.A.P. Abdullah, G. Saleh and T.L. Abdullah. 2014. efficient in vitro plantlet regeneration from shoot tip cultures of Curculigo latifolia, a Medicinal Plant. Sci. World J. http://dx.doi.org/10.1155/2014/275028.
  7. Cho, K.W., K.H. Tae and S.K. Sung. 2005. Characteristics of flowering habit, pollination patterns and seed setting of Hosta plantaginea Aschers. Korean J. Plant Res. 18:309-314.
  8. De Gyves E.M., C.A. Sparks, A.F. Fieldsend, P.A. Lazzeri and H.D. Jones. 2001. High frequency of adventitious shoot regeneration from commercial cultivars of evening primrose (Oenothera spp.) using thidiazuron. Ann. Appl. Biol. 138: 329-332. https://doi.org/10.1111/j.1744-7348.2001.tb00117.x
  9. Duan, H., Y. Li, Y. Pei, W. Deng, M. Luo, Y. Xiao and D. Zhao. 2006. Auxin, cytokinin and abscisic acid: biosynthetic and catabolic genes and their potential applications in ornamental crops. J. Crop Improv. 18:347-364. https://doi.org/10.1300/J411v18n01_03
  10. Grenfell, D. 1996. The Gardener's Guide to Growing Hostas. Timber Press, New York, USA.
  11. Hill, R.A., G.A. Tuskan and A.A Boe. 1989. In vitro propagation of Hosta sieboldiana using excised ovaries from immature florets. Plant Cell Tiss. Org. Cult. 17:71-75. https://doi.org/10.1007/BF00042283
  12. Huetteman, C.A. and J.E. Preece. 1993. Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tiss. Org. Cult. 33:105-119. https://doi.org/10.1007/BF01983223
  13. Huh, Y. S., J. K. Lee and S. Y. Nam. 2017. Effect of medium composition on in vitro shoot regeneration from leaves of Passiflora species through somatic embryogenesis and callus induction. Proceedings of Symposium. April 2017. Korean J. Plant Res. p. 237.
  14. Jeong, Y.C. 1985. A taxonomic study of the genus Hosta in Korea. Department of Botany. Ph.D. Thesis, Seoul Nat'l. University, Seoul, Korea.
  15. Kim, D.H. and I. Sivanesan. 2016. Influence of benzyladenine and thidiazuron on shoot regeneration from leaf and shoot tip explants of Sedum sarmentosum Bunge. Braz. Arch. Biol. Technol. 59:e16150717.
  16. Kim, Y.R. 2011. In vitro multiplication of Hosta plantaginea by shoot-tip culture. Department of Horticulture and landscape architecture, MS Thesis, University of Daegu, Korea.
  17. KNA. 2012. Rare Plants Data Book in Korea. Korea National Arboretum, Pochen, Korea. p. 276.
  18. Krause, K. 1930. Asphodeloideae-Hemerocallidae in Engler, Nat Pflanzenfam. Ed. 2, XV-a. pp. 295-296.
  19. Ku, B.S. and M.S. Cho. 2016. In vitro multiplication of Hosta plantaginea 'Joseon' by shoot-tip culture. Flower Res. J. 24:328-336. https://doi.org/10.11623/frj.2016.24.4.12
  20. Lee, J.S., H.E. Seo and J. Hong. 2003. Leaf burn development in Hosta native species and introduced cultivars in outdoor gardens. Korean J Hort. Sci. Technol. 21:353-358.
  21. Lee, Y.K., J.D. Jung and S.T. Kim. 2015. A suggestion of Korean names for the Orders and Families included in the APG III classification system. Korean J. Plant Taxon. 45:278-297. https://doi.org/10.11110/kjpt.2015.45.3.278
  22. Meyer, M.M. 1980. In vitro propagation of Hosta sieboldiana. Hort. Sci. 15:737-738.
  23. Murashige, T., and F.A. Skoog. 1962. Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  24. Murthy, S.J.M. and P.K. Saxena. 1998. Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev. Biol. 34:267-275. https://doi.org/10.1007/BF02822732
  25. Paek, K.Y. and S.H. Ma. 1996. In vitro propagation of Hosta using cultured shoot tips and somaclonal variability of regenerants. Acta Hort. 440:576-581. https://doi.org/10.17660/actahortic.1996.440.101
  26. Papachatzi, M., P.A. Hammer and P.M. Hasegawa. 1980. In vitro propagation of Hosta plantaginea. HortSci. 15:506-507.
  27. Papachatzi, M., P.A. Hammer and P.M. Hasegawa. 1981. In vitro propagation of Hosta decorata 'Thomas Hogg' using cultured shoot tips. J. Amer. Soc. Hort. Sci. 106:232-236.
  28. RHS Horticultural Database 2018. http://apps.rhs.org.uk/horticulturaldatabase/. Accessed 30 August 2018.
  29. Saito, H. and M. Nakano. 2002. Plant regeneration from suspension cultures of Hosta sieboldiana. Plant Cell Tiss. Org. Cult. 71:23-28. https://doi.org/10.1023/A:1016574513545
  30. Shudo, K. 1994. Chemistry of Phenylurea cytokinins: In Mokk, D.V. and M.C. Mok (2nd ed.), Cytokinins: chemistry, activity, and function, CRC Press, Boca Raton, FL (USA). pp. 35-42.
  31. Spiegel, S. 2006. Problems associated with in vitro culture propagation and virus detection. Acta Hort. 722:79-82. https://doi.org/10.17660/actahortic.2006.722.9
  32. Srivastava, L.M. 2002. Plant growth and development: hormones and environment. Academic Press. San Diego, CA (USA).
  33. Ten Houten, J.G., F. Quak, and F.A. van der Meer. 1968. Heat treatment and meristem culture for the production of virusfree plant material. Neth. J. Plant Pathol. 74:17-24. https://doi.org/10.1007/BF01988884
  34. The Korean Society of Plant Taxonomists. 2015. A study on the taxonomic enumeration of Korean endemic vascular plants. Korea Forest Service. p. 32, 84, 97.
  35. Van Tuyl, J.M., M.P. Van Dien, M.G.M. Van Creij, T.C.M Van Kleinwee, J. Franken and R.T. Bino 1991. Application of in vitro pollination, ovary culture, ovule culture and embryo rescue for overcoming incongruity barriers in interspecific Lilium crosses. Plant Sci. 74:115-126. https://doi.org/10.1016/0168-9452(91)90262-7
  36. Yang, X.Y., J.F. Lu, J.A. Teixeira da Silva and G.H. Ma. 2012. Somatic embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum. Plant Cell Tiss. Org. Cult. 109:213-221. https://doi.org/10.1007/s11240-011-0087-4
  37. Yildirim, A.B. and A.U. Turker. 2009. In vitro adventitious shoot regeneration of the medicinal plant meadowsweet (Filipendula ulmaria (L.) Maxim). In Vitro Cell Dev. Biol. 45:135-144. https://doi.org/10.1007/s11627-009-9194-x
  38. Zhu, L.H., X.Q. Wu, H.Y. Qu, J. Ji, and J.R. Ye. 2010. Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tiss. Org. Cult. 102:121-128. https://doi.org/10.1007/s11240-010-9711-y