Fig. 1. Confirmation of uracil auxotroph in P. stipitisΔura strain (A) and screening of fusants by auxotrophic test and analysis of β-glucanase activity (B). Host strains and fusants were streaked on to YPD, SD containing geneticin and YPD containing MUG medium for 3 days. The β-glucanase activity was detected by MUG degradation on UV illumination. WT, P. stipitis wild type strain: Δura3, P. stipitisΔura strain: S, S. cerevisiae BYK-F11 strain: P, P. stipitisΔura strain; No.8, selected fusant (BYKPS-F8).
Fig. 2 Karyotype analysis of BYKPS-F8 strain and comparison of cell growth in each strain on YPX (2%) medium. (A) Karyotype of each strain was analyzed by pulsed field gel electrophoresis (PFGE). Lane 1: S. cerevisiae BYK-F11 strain, lane 2: P. stipitisΔura strain, lane 3: BYKPS-F8 fusant. (B) Each strain was cultivated on YPX (2% xylose) at 30℃ for 48 hr. Graph bar □: S. cerevisiae BYK-F11 strain, ▨: P. stipitisΔura strain, ■: BYKPS-F8.
Fig. 3. Analysis for ethanol tolerance of BYKPS-F8 fusant. Aliquots (3 μl) of 10-fold serially diluted cell suspensions from S. cerevisiae BYK-F11, P. stipitisΔura strain and BYKPSF8 fusant were spotted on to YPD containing 8% ethanol (YPDE), then incubated for 3 days at 30℃. #1 and #2 indicate independent clone from BYKPS-F8 fusant.
Table 1. Comparison of various phenotypes in S. cerevisiae BYK-F11, P. stipitisΔura strain and BYKPS-F8 fusant
References
- Attfield, P. V. 1997. Stress tolerance: the key to effective strains of industrial baker's yeast. Nat. Biotechnol. 15, 1351-1357. https://doi.org/10.1038/nbt1297-1351
- Bae, Y. W., Seong, P. J., Cho, D. H., Shin, S. J., Kim, S. W., Han, S. O., Kim, Y. H. and Park, C. H. 2010. Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis. KSBBJ 25, 533-538.
- Harashima, S., Takagi, A. and Oshima, Y. 1984. Transformation of protoplasted yeast cells is directly associated with cell fusion. Mol. Cell Biol. 4, 771-778. https://doi.org/10.1128/MCB.4.4.771
- Hou, L. 2010. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160, 1084-1093. https://doi.org/10.1007/s12010-009-8552-9
- Jeon, H. T., Park, U. M. and Kim, K. 2011. The use of aureobasidin A resistant gene as the dominant selectable marker for the selection of industrial yeast hybrid. Kor. J. Microbiol. Biotechnol. 39, 111-118.
- Jung H. M. and Kim, Y. H. 2018. Simultaneous Overexpression of Integrated Genes by Copy Number Amplification of a Mini-Yeast Artificial Chromosome. J. Microbiol. Biotechnol. 28, 821-825. https://doi.org/10.4014/jmb.1711.11061
-
Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimazation for production of exo-
${\beta}$ -1,3-glucanase (laminarase) from Aspergillus oryzae in Saccharomyces cerevisiae. Kor. Soc. Biotech. Bioeng. 26, 427-432. - Park, A. H. and Kim, Y. H. 2013. Breeding of ethanol producing and tolerant Saccharomyces cerevisiae by using genome shuffling. J. Life Sci. 23, 1192-1198. https://doi.org/10.5352/JLS.2013.23.10.1192
- Sakamoto, T., Hasunuma, T., Hori, Y., Yamada, R. and Kondo, A. 2012. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J. Biotechnol. 158, 203-210. https://doi.org/10.1016/j.jbiotec.2011.06.025
-
Seok, J. H., Kim, H. S., Hatada, Y., Nam, S. W. and Kim, Y. H. 2012. Construction of an expression system for the secretory production of recombinant
${\alpha}$ -agarase in yeast. Biotechnol. Lett. 34, 1041-1049. https://doi.org/10.1007/s10529-012-0864-0 -
Seok, J. H., Park, H. G., Lee, S. H., Nam, S. W., Jeon, S. J., Kim, J. H. and Kim, Y. H. 2010. High-level secretory expression of recombinant
${\beta}$ -agarase from Zobellia galactanivarans in Pichia pastoris. Kor. J. Microbiol. Biotechnol. 38, 40-45. - Sheehan, C. and Weiss, A. S. 1990. Yeast artificial chromosome: rapid extraction for high resolution analysis. Nucleic Acids Res. 18, 2193. https://doi.org/10.1093/nar/18.8.2193
- Shi, D. J., Wang, C. L. and Wang, K. M. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Mircobiol. Biotechnol. 36, 139-147.
- Spencer, J. F. T. and Spencer, D. M. 1983. Genetic improvement of industrial yeast. Ann. Rev. Microbiol. 37, 121-142. https://doi.org/10.1146/annurev.mi.37.100183.001005
- Yanagisawa, M., Kawai, S. and Murata, K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4, 224-235. https://doi.org/10.4161/bioe.23396
- Zhu, Y., Wu, L., Zhu, J., Xu, Y. and Yu, S. 2018. Quantitative proteomic analysis of xylose fermentation strain Pichia stipitis CBS 5776 to lignocellulosic inhibitors acetic acid, vanillin and 5-hydroxymethylfurfural. FEMS Microbiol. Lett. 365, doi: 10.1093/femsle/fny245.