DOI QR코드

DOI QR Code

Construction of Yeast Strain Suitable for Bioethanol Production by Using Fusion Method

융합법을 이용한 바이오에탄올 생산에 적합한 효모균주의 구축

  • Kim, Yeon-Hee (Biomedical Engineering and Biotechnology Major, Divison of Applied Bioengineering, Dong-Eui University)
  • 김연희 (동의대학교 바이오응용공학부 의생명공학전공)
  • Received : 2019.02.19
  • Accepted : 2019.03.13
  • Published : 2019.03.30

Abstract

To construct useful yeast strain for bioethanol production, we improved yeast harboring various phenotypes by using yeast protoplast fusion method. In this study, S. cerevisiae BYK-F11 strain which have ethanol tolerance, thermotolerance and ${\beta}-glucanase$ activity and P. $stipitis{\Delta}ura$ strain which has xylose metabolism pathway were fused by genome shuffling. P. $stipitis{\Delta}ura$ strain was constructed for protoplast fusion by URA3 gene disruption, resulting in uracil auxotroph. By protoplast fusion, several fused cells were selected and BYKPS-F8 strain (fused cell) showing both karyotypes from two parent strains (S. cerevisiae BYK-F11 and P. $stipitis{\Delta}ura$ strain) among 22 fused cells was finally selected. Sequentially, various phenotypes such as ${\beta}-glucanase$ activity, xylose utility, ethanol tolerance, thermotolerance and ethanol productivity were analyzed. The BYKPS-F8 strain obtained ${\beta}-glucanase$ activity from BYK-F11 strain and 1.2 fold increased xylose utility from P. $stipitis{\Delta}ura$ strain. Also, the BYKPS-F8 strain showed thermotolerance at $40^{\circ}C$ and increased ethanol tolerance in medium containing 8% ethanol. In this fused cell, 7.5 g/l ethanol from 20 g/l xylose was produced and the multiple phenotypes were stably remained during long term cultivation (260 hr). It was proved that novel biological system (yeast strains) is easily and efficiently bred by protoplast fusion among yeasts having different genus.

본 연구는 에탄올내성, 내열성, ${\beta}-glucanase$ 활성 및 xylose 대사가 가능한 새로운 생물시스템을 육종하기 위해 원형질체융합(protoplast fusion)이라는 방법을 사용하여 S. cerevisiae BYK-F11 균주와 P. $stipitis{\Delta}ura$ 균주와의 genome shuffling을 시도하였다. P. $stipitis{\Delta}ura$ 균주는 URA3 유전자를 결실시켜 uracil 영양요구주로 구축되었다. Protoplast fusion을 통해 몇몇의 융합체가 선별되었고, 두 모균주인 BYK-F11 균주와 P. $stipitis{\Delta}ura$ 균주의 핵형(karyotype)를 모두 가지는 BYKPS-F8 균주가 22개의 융합체중에서 최종 선정되었다. 이어 ${\beta}-glucanase$ 활성, xylose 이용능, 에탄올내성, 내열성 및 에탄올생산성에 대한 다양한 표현형이 조사되었다. BYKPS-F8 균주는 모균주인 BYK-F11 균주가 가지는 ${\beta}-glucanase$ 활성을 가지게 되었고, P. $stipitis{\Delta}ura$ 균주가 가지는 xylose 이용능도 모균주보다 1.2배 증가되었음을 확인할 수 있었다. BYKPS-F8 균주는 $40^{\circ}C$에서 내열성을 보였으며, 8% 에탄올이 첨가된 배지에서 모균주에 비해 에탄올 내성이 증가되었음을 확인 할 수 있었다. 20 g/l의 xylose가 함유된 배지에서 72시간 배양에 의해 약 7.5 g/l의 에탄올을 생산할 수 있었으며, 260시간의 장기간의 배양에도 BYKPS-F8균주에 도입한 다형질이 안정적으로 유지됨을 확인하였다. 따라서, 본 연구에서 사용된 균주 육종방법을 통해 다형질을 가진 다른 속간의 균주 융합 및 산업적으로 유용한 생물시스템의 육종이 가능함을 확인하였다.

Keywords

SMGHBM_2019_v29n3_376_f0001.png 이미지

Fig. 1. Confirmation of uracil auxotroph in P. stipitisΔura strain (A) and screening of fusants by auxotrophic test and analysis of β-glucanase activity (B). Host strains and fusants were streaked on to YPD, SD containing geneticin and YPD containing MUG medium for 3 days. The β-glucanase activity was detected by MUG degradation on UV illumination. WT, P. stipitis wild type strain: Δura3, P. stipitisΔura strain: S, S. cerevisiae BYK-F11 strain: P, P. stipitisΔura strain; No.8, selected fusant (BYKPS-F8).

SMGHBM_2019_v29n3_376_f0002.png 이미지

Fig. 2 Karyotype analysis of BYKPS-F8 strain and comparison of cell growth in each strain on YPX (2%) medium. (A) Karyotype of each strain was analyzed by pulsed field gel electrophoresis (PFGE). Lane 1: S. cerevisiae BYK-F11 strain, lane 2: P. stipitisΔura strain, lane 3: BYKPS-F8 fusant. (B) Each strain was cultivated on YPX (2% xylose) at 30℃ for 48 hr. Graph bar □: S. cerevisiae BYK-F11 strain, ▨: P. stipitisΔura strain, ■: BYKPS-F8.

SMGHBM_2019_v29n3_376_f0003.png 이미지

Fig. 3. Analysis for ethanol tolerance of BYKPS-F8 fusant. Aliquots (3 μl) of 10-fold serially diluted cell suspensions from S. cerevisiae BYK-F11, P. stipitisΔura strain and BYKPSF8 fusant were spotted on to YPD containing 8% ethanol (YPDE), then incubated for 3 days at 30℃. #1 and #2 indicate independent clone from BYKPS-F8 fusant.

Table 1. Comparison of various phenotypes in S. cerevisiae BYK-F11, P. stipitisΔura strain and BYKPS-F8 fusant

SMGHBM_2019_v29n3_376_t0001.png 이미지

References

  1. Attfield, P. V. 1997. Stress tolerance: the key to effective strains of industrial baker's yeast. Nat. Biotechnol. 15, 1351-1357. https://doi.org/10.1038/nbt1297-1351
  2. Bae, Y. W., Seong, P. J., Cho, D. H., Shin, S. J., Kim, S. W., Han, S. O., Kim, Y. H. and Park, C. H. 2010. Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis. KSBBJ 25, 533-538.
  3. Harashima, S., Takagi, A. and Oshima, Y. 1984. Transformation of protoplasted yeast cells is directly associated with cell fusion. Mol. Cell Biol. 4, 771-778. https://doi.org/10.1128/MCB.4.4.771
  4. Hou, L. 2010. Improved production of ethanol by novel genome shuffling in Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 160, 1084-1093. https://doi.org/10.1007/s12010-009-8552-9
  5. Jeon, H. T., Park, U. M. and Kim, K. 2011. The use of aureobasidin A resistant gene as the dominant selectable marker for the selection of industrial yeast hybrid. Kor. J. Microbiol. Biotechnol. 39, 111-118.
  6. Jung H. M. and Kim, Y. H. 2018. Simultaneous Overexpression of Integrated Genes by Copy Number Amplification of a Mini-Yeast Artificial Chromosome. J. Microbiol. Biotechnol. 28, 821-825. https://doi.org/10.4014/jmb.1711.11061
  7. Kim, M. J., Nam, S. W., Tamano, K., Machida, M., Kim, S. K. and Kim, Y. H. 2011. Optimazation for production of exo-${\beta}$-1,3-glucanase (laminarase) from Aspergillus oryzae in Saccharomyces cerevisiae. Kor. Soc. Biotech. Bioeng. 26, 427-432.
  8. Park, A. H. and Kim, Y. H. 2013. Breeding of ethanol producing and tolerant Saccharomyces cerevisiae by using genome shuffling. J. Life Sci. 23, 1192-1198. https://doi.org/10.5352/JLS.2013.23.10.1192
  9. Sakamoto, T., Hasunuma, T., Hori, Y., Yamada, R. and Kondo, A. 2012. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J. Biotechnol. 158, 203-210. https://doi.org/10.1016/j.jbiotec.2011.06.025
  10. Seok, J. H., Kim, H. S., Hatada, Y., Nam, S. W. and Kim, Y. H. 2012. Construction of an expression system for the secretory production of recombinant ${\alpha}$-agarase in yeast. Biotechnol. Lett. 34, 1041-1049. https://doi.org/10.1007/s10529-012-0864-0
  11. Seok, J. H., Park, H. G., Lee, S. H., Nam, S. W., Jeon, S. J., Kim, J. H. and Kim, Y. H. 2010. High-level secretory expression of recombinant ${\beta}$-agarase from Zobellia galactanivarans in Pichia pastoris. Kor. J. Microbiol. Biotechnol. 38, 40-45.
  12. Sheehan, C. and Weiss, A. S. 1990. Yeast artificial chromosome: rapid extraction for high resolution analysis. Nucleic Acids Res. 18, 2193. https://doi.org/10.1093/nar/18.8.2193
  13. Shi, D. J., Wang, C. L. and Wang, K. M. 2009. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Mircobiol. Biotechnol. 36, 139-147.
  14. Spencer, J. F. T. and Spencer, D. M. 1983. Genetic improvement of industrial yeast. Ann. Rev. Microbiol. 37, 121-142. https://doi.org/10.1146/annurev.mi.37.100183.001005
  15. Yanagisawa, M., Kawai, S. and Murata, K. 2013. Strategies for the production of high concentrations of bioethanol from seaweeds: production of high concentrations of bioethanol from seaweeds. Bioengineered 4, 224-235. https://doi.org/10.4161/bioe.23396
  16. Zhu, Y., Wu, L., Zhu, J., Xu, Y. and Yu, S. 2018. Quantitative proteomic analysis of xylose fermentation strain Pichia stipitis CBS 5776 to lignocellulosic inhibitors acetic acid, vanillin and 5-hydroxymethylfurfural. FEMS Microbiol. Lett. 365, doi: 10.1093/femsle/fny245.