DOI QR코드

DOI QR Code

Effects of Different Light Wavelengths on the Growth of Olive Flounder (Paralichthys olivaceus)

빛의 파장이 넙치 Paralichthys olivaceus의 성장에 미치는 영향

  • Received : 2019.01.30
  • Accepted : 2019.02.12
  • Published : 2019.03.30

Abstract

To investigate the effects of light on growth in fish, olive flounder (Paralichthys olivaceus) were reared under four kinds of monochromatic light-emitting diodes (LEDs) at violet (400 nm), blue (465 nm), green (508 nm), and red (635 nm) wavelengths, along with a white fluorescent lamp as control. The rearing experiments were carried out with 15 fish per tank under different wavelength illumination at the same intensity. After rearing the fish under a 12 hr:12 hr light:dark photoperiod for 60 days, percentage increases in weight gain of $269.92{\pm}13.02$, $363.21{\pm}3.74$, $433.22{\pm}4.83$, $290.17{\pm}11.83$, and $340.74{\pm}26.58%$ and increases in specific growth rates (SGR) of $2.18{\pm}0.06$, $2.56{\pm}0.07$, $2.79{\pm}0.01$, $2.27{\pm}0.05$, and $2.47{\pm}0.10$ were observed in fish grown under the illumination of red, blue, green, and violet LEDs and the white fluorescent light, respectively. The results show faster growth in fish reared under green LEDs, but slower growth in those reared under red light. Differences in most blood parameters were minor, aside from an increased level of glutamic oxaloacetic transaminase in the fish grown under red LED illumination. Histological analysis of the retina showed few changes in the ratio of photoreceptor layer thickness to total retina thickness in fish reared under the green LEDs compared to those in other illumination groups. These results indicate that green LED light can foster increased growth in olive flounder with no distinct harmful effects on their light-sensitive photoreceptor layers.

빛의 파장이 넙치의 성장에 미치는 영향을 분석하기 위하여 보라색(400 nm), 청색(465 nm), 녹색(508 nm), 그리고 적색(635 nm)의 LED와 백색 형광등하에서 성장 실험을 수행하였다. 수조당 15마리 넙치를 12:12 시간 각 파장 LED의 광주기하에서 60일 동안 사육한 결과, 각기 $269.92{\pm}13.02%$$2.18{\pm}0.06$(보라색), $363.21{\pm}3.74%$$2.56{\pm}0.07$(청색), $433.22{\pm}4.83%$$2.79{\pm}0.01$(녹색), $290.17{\pm}11.83$$2.27{\pm}0.05$(적색), 그리고 $340.74{\pm}26.58%$$2.47{\pm}0.10$(형광등)의 체중 증가와 일간성장률(SGR: %/day)이 관찰되었다. 본 실험 결과 녹색 LED 하에서 넙치의 성장이 가장 빨랐으며, 적색 조명 하에서는 성장이 느린 것으로 나타났다. 대부분의 혈액 지표는 그룹별 차이가 없으나, 적색 LED조명 하에서 자란 넙치에서 높은 수준의 glutamic oxaloacetic transaminase (GOT)가 관찰되었다. 빛의 1차 감지 기관인 망막의 조직학적 분석 결과 광수용체 층의 상대적 두께에 별다른 영향이 없는 것으로 보아 녹색광이 무해함을 유추할 수 있다.

Keywords

SMGHBM_2019_v29n3_311_f0001.png 이미지

Fig. 1. (A) Weight gains (%) and (B) specific growth rates of olive flounder (Paralichthys olivaceus) grown under illumination of four different LEDs (red, blue, green, and violet) and white fluorescent light (control) for a period of 60 days.

SMGHBM_2019_v29n3_311_f0002.png 이미지

Fig. 2. Representative photomicrographs of retina specimens prepared from the eyes of olive flounder (Paralichthys olivaceus) reared under illumination of four different LEDs (red, blue, green, and violet) and a white fluorescent lamp (control) for a period of 60 days. The photomicrograph of a retina from a fish grown under blue light illustrates the regions measured for total retina (RT) and photoreceptor layer (PR) thickness. Prepared using H&E staining; 200× magnification; scale bar, 50 μm.

Table 1. Growth performance of olive flounder (Paralichthys olivaceus) reared under illumination of LEDs of four different wavelengths (red, blue, green, and violet) and white fluorescent light (control) for a period of 60 days

SMGHBM_2019_v29n3_311_t0001.png 이미지

Table 2. Levels of glutamic pyruvic transaminase (GPT), glutamic oxaloacetic transaminase (GOT), glucose (GLU) and total proteins (TP) in the blood plasma. Blood samples were collected from olive flounder (Paralichthys olivaceus) grown under different LED wavelengths (red, blue, green, and violet) and white fluorescent light (control group) for a period of 60 days

SMGHBM_2019_v29n3_311_t0002.png 이미지

Table 3. Thickness (μm) of retina and photoreceptor layers in the eyes of olive flounder (Paralichthys olivaceus) reared under illumination of LEDs at four different wavelengths (red, blue, green, and violet) and a white fluorescent light (control group). Ratios of the thickness of the photoreceptor layer to that of the total retina (PR/RT) were calculated for each sample

SMGHBM_2019_v29n3_311_t0003.png 이미지

References

  1. Allison, W. T., Hallows, T. E., Johnson, T., Hawryshyn, C. W. and Allen, D. M. 2006. Photic history modifies susceptibility to retinal damage in albino trout. Vis. Neurosci. 23, 25-34. https://doi.org/10.1017/S0952523806231031
  2. Barton, B. A., Schreck, C. B. and Barton, L. D. 1987. Effects of chronic cortisol administration and daily acute stress on growth, physiological conditions, and stress responses in juvenile rainbow trout. Dis. Aquat. Org. 2, 173-185. https://doi.org/10.3354/dao002173
  3. Bayarri, M. J., Madrid, J. A. and Sanchez-Vazquez, F. J. 2002. Influence of light intensity, spectrum and orientation on sea bass plasma and ocular melatonin. J. Pineal Res. 32, 34-40. https://doi.org/10.1034/j.1600-079x.2002.10806.x
  4. Biswas, A. K., Seoka, M., Inoue, Y., Takii, K. and Kumai, H. 2005. Photoperiod influences the growth, food intake, feed efficiency and digestibility of red sea bream (Pagrus major). Aquaculture 250, 666-673. https://doi.org/10.1016/j.aquaculture.2005.04.047
  5. Boeuf, G. and Le Bail, P. Y. 1999. Does light have an influence on fish growth? Aquaculture 177, 129-152. https://doi.org/10.1016/S0044-8486(99)00074-5
  6. Boulton, M., Rozanowska, M. and Rozanowska, B. 2001. Retinal photodamage. J. Photochem. Photobiol. 64, 144-161. https://doi.org/10.1016/S1011-1344(01)00227-5
  7. Bowmaker, J. K. 1990. Retinal structure of fishes. In: Douglas, R. and Djamgoz, M. (Eds.), The Visual System of Fish. Chapman & Hall, London.
  8. Canosa, L. F., Chang, J. P. and Peter, R. E. 2007. Neuroendocrine control of growth hormone in fish. Gen. Comp. Endocrinol. 151, 1-26. https://doi.org/10.1016/j.ygcen.2006.12.010
  9. Choi, C. Y., Shin, H. S., Choi, J., Kim, N. N., Lee, J. and Kil, G. S. 2012. Effects of LED light spectra on starvation-induced oxidative stress in the cinnamon clownfish, Amphprion melanopus, Comp. Biochem. Physiol. A 163, 357e363. https://doi.org/10.1016/j.cbpa.2012.07.005
  10. Duncan, D. B. 1955 Multiple range and multiple F test. Biometrics 11, 1-42. https://doi.org/10.2307/3001478
  11. Harris, J. and Bird D. J. 2000. Modulation of the fish immune system by hormones. Vet. Immunol. Immunopathol. 77. 163e176. https://doi.org/10.1016/S0165-2427(00)00235-X
  12. Henne, J. P. and Watanabe, W. O. 2003. Effects of light intensity and salinity on growth, survival, and whole-body osmolality of larval southern flounder Paralichthys lethostigma. J. World Aquac. Soc. 34. 450-465. https://doi.org/10.1111/j.1749-7345.2003.tb00084.x
  13. Heydarnejad, M. S., Parto, M. and Pilevarian, A. A. 2013. Influence of light colours on growth and stress response of rainbow trout (Oncorhynchus mykiss) under laboratory conditions. J. Anim. Physiol. Anim. Nutr. 97, 67-71. https://doi.org/10.1111/j.1439-0396.2011.01243.x
  14. Karakatsouli, N., Papoutsoglou S. E. and Manolessos, G. 2007. Combined effects of rearing density and tank color on the growth and welfare of juvenile white sea bream Diplodus sargus L. in a recirculating water system. Aquaculture 38, 1152-1160. https://doi.org/10.1111/j.1365-2109.2007.01780.x
  15. Karakatsouli, N., Papoutsoglou, E. S., Sotiropoulos, N., Mourtikas, D., Stigen-Martinsen, T. and Papoutsoglou, S. E. 2010. Effects of light spectrum, rearing density and light intensity on growth performance of scaled and mirror common carp Cyprinus carpio reared under recirculating system conditions. Aquacult. Eng. 42, 121-127. https://doi.org/10.1016/j.aquaeng.2010.01.001
  16. KOSTAT (Statistics KOREA). 2018. Agriculture & fishery products.
  17. Levin, J. and McNicol, E. 1982. Color vision in fishes. Sci. Am. 246, 108-117.
  18. Luchiari, A. C. and Freire F. A. M. 2009. Effects of environmental colour on growth of Nile tilapia, Oreochromis niloticus (Linnaeus, 1758), maintained individually or in groups. J. Appl. Ichthyol. 25, 162-167. https://doi.org/10.1111/j.1439-0426.2008.01203.x
  19. Migaud, H., Cowan, M., Taylor, J. and Ferguso, H. W. 2007. The effect of spectral composition and light intensity on melatonin, stress and retinal damage in post-smolt Atlantic salmon, Salmo salar. Aquaculture 270, 390-404. https://doi.org/10.1016/j.aquaculture.2007.04.064
  20. Ruchin, A. B. 2004. Influence of colored light on growth rate of juveniles of fish. Fish Physiol. Biochem. 30, 175-17. https://doi.org/10.1007/s10695-005-1263-4
  21. Shin, H. S., Lee, J. and Choi, C. Y. 2012. Effects of LED light spectra on the growth of the yellowtail clownfish, Amphiprion clarkii. Fish Sci. 78, 549-556. https://doi.org/10.1007/s12562-012-0482-8
  22. Takahashi, A., Kasagi, S., Murakami, N., Furufuji, S., Kikuchi, S., Mizusawa, K. and Andoh, T. 2016. Chronic effects of light irradiated from LED on the growth performance and endocrine properties of barfin flounder Verasper moseri. Gen. Comp. Endocrinol. 232, 101-108. https://doi.org/10.1016/j.ygcen.2016.01.008
  23. Taylor, J. F., Migaud, H., Porter, M. J. R. and Bromage, N. R. 2005. Photoperiod influences growth rate and plasma insulin-like growth factor-I levels in juvenile rainbow trout, Oncorhynchus mykiss. Gen. Com. Endocrinol. 142, 169-185. https://doi.org/10.1016/j.ygcen.2005.02.006
  24. Vihtelic, T. S. and Hyde, D. R. 2000. Light-induced rod and cone cell death and regeneration in the adult albino zebrafish (Danio rerio) retina. J. Neurobiol. 44, 289-307. https://doi.org/10.1002/1097-4695(20000905)44:3<289::AID-NEU1>3.0.CO;2-H
  25. Villamizar, N., Blanco-Vives, B., Migaud, H., Davie, A., Carboni, S. and Sanchez-Vazquez, F. J. 2011. Effects of light during early larval development of some aquaculture teleosts: a review. Aquaculture 315, 86-94. https://doi.org/10.1016/j.aquaculture.2010.10.036
  26. Villamizar, N., Garcia-Alcazar, A. and Sanchez-Vazquez, F. J. 2009. Effect of light spectrum and photoperiod on the growth, development and survival of European sea bass (Dicentrarchus labrax) larvae. Aquaculture 292, 80-86. https://doi.org/10.1016/j.aquaculture.2009.03.045
  27. Volpato, G. L., Bovi,T. S., de Freitas, R. H. A., da Sliva, D. F., Delicio, H. C., Giaquinto, P. C. and Barreto, R. E. 2013. Red light stimulates feeding motivation in fish but does not improve growth. PLoS One 8, e59134. doi: 10.1371/journal.pone.0059134.
  28. Yamanome, T., Mizusawa, K., Hasegawa, E. I. and Takahashi, A. 2009. Green light stimulates somatic growth in the barfin flounder Verasper moseri. J. Exp. Zool. A 311, 73-79.