DOI QR코드

DOI QR Code

Comparative study on Corrosion Inhibition of Vietnam Orange Peel Essential Oil with Urotropine and Insight of Corrosion Inhibition Mechanism for Mild Steel in Hydrochloric Solution

  • Bui, Huyen T.T. (School of Chemical Engineering, Hanoi University of Science and Technology) ;
  • Dang, Trung-Dung (School of Chemical Engineering, Hanoi University of Science and Technology) ;
  • Le, Hang T.T. (School of Chemical Engineering, Hanoi University of Science and Technology) ;
  • Hoang, Thuy T.B. (School of Chemical Engineering, Hanoi University of Science and Technology)
  • Received : 2018.07.18
  • Accepted : 2018.09.18
  • Published : 2019.03.31

Abstract

The corrosion inhibiting mechanism of Vietnam orange peel essential oil (OPEO) for mild steel in 1 N HCl solution was investigated elaborately. Corrosion inhibition ability of OPEO was characterized by electrochemical polarization, electrochemical impedance spectroscopy (EIS), and weight loss method. In the corrosive solution, OPEO worked as a mixed inhibitor and the inhibition efficiency of OPEO increased with the increase of its concentration. High inhibition efficiencies over 90% were achieved for the concentration of 3 - 4 g/L OPEO, comparable to that of 3.5 g/L urotropine (URO), a commercial corrosion inhibitor for acid media used in industry. By using adsorption isotherm models (Langmuir, Temkin and Frumkin), thermodynamic parameters of adsorption were calculated. The obtained results indicated physical adsorption mechanism of OPEO on the steel surface. The components responsible for the corrosion inhibition activity of OPEO were not only D-limonene, but also other compounds, which contain C=O, C=C, O-H, C-O-C, -C=CH and C-H bonding groups in the molecules.

Keywords

E1JTC5_2019_v10n1_69_f0001.png 이미지

Fig. 1. Polarization curves of the mild steel in 1N HCl solution without and with different concentration (1÷4 g/L) of OPEO and 3.5 g/L URO

E1JTC5_2019_v10n1_69_f0002.png 이미지

Fig. 2. The inhibition efficiency of OPEO and URO for the mild steel in the 1N HCl acid after different immersion times

E1JTC5_2019_v10n1_69_f0003.png 이미지

Fig. 3. SEM images of the mild steel surface before and after 1h of exposure in 1N HCl acid at 25 °C: (A) before; (B) after corrosion in the blank solution; (C) after corrosion in the presence of 3 g/L OPEO; and (D) after corrosion in the presence of 3.5 g/L URO

E1JTC5_2019_v10n1_69_f0004.png 이미지

Fig. 5. Dependence of surface coverage of the mild steel on the concentration of OPEO added in the test solutions.

E1JTC5_2019_v10n1_69_f0005.png 이미지

Fig. 6. Isotherm adsorption of inhibitor on the surface of the mild steel in 1N HCl at different temperatures: (A) Langmuir isotherm; (B) Temkin isotherm and (C) Frumkin isotherm

E1JTC5_2019_v10n1_69_f0006.png 이미지

Fig. 7. SEM images of the mild steel surface before and after 1h of exposure in acid 1N HCl with and without 3 g/L OPEO at 25°C: (A) pristine; (B) after corrosion in the blank solution; (C) and (D) after corrosion in the blank solution followed by rinsing; (E) after corrosion in the presence of OPEO; and (F) after corrosion in the presence of OPEO followed by rinsing

E1JTC5_2019_v10n1_69_f0007.png 이미지

Fig. 8. FTIR spectrum in the region of 400-4000 cm-1 of the film formed on the mild steel surface after 24 hour immersed in 1N HCl solution with 3 g/L OPEO at 25°C

E1JTC5_2019_v10n1_69_f0008.png 이미지

Fig. 9. The adsorption model of OPEO on the mild steel surface

E1JTC5_2019_v10n1_69_f0009.png 이미지

Fig. 4. (A) Nyquist plots of the mild steel in 1N HCl solutions in the absence and presence of OPEO with various concentrations (1÷4 g/L); (B) Relevant equivalent circuit model used for fitting measured impedance data. Rs is solution resistance; Rct is charge transfer resistance; CPE is the constant phase element; RL and L are inductive parameters

Table 1. The composition of OPEO analyzed by GCMS method

E1JTC5_2019_v10n1_69_t0001.png 이미지

Table 2. Potentiodynamic polarization parameters for the mild steel in 1N HCl solution with and without inhibitors.

E1JTC5_2019_v10n1_69_t0002.png 이미지

Table 3. EIS parameters for the mild steel in 1N HCl solution in the absence and presence of OPEO fitted by the equivalent circuit

E1JTC5_2019_v10n1_69_t0003.png 이미지

Table 4. The adsorption-desorption equilibrium constant K (M-1) and adsorption free energy ΔGads calculated Langmuir and Temkin models

E1JTC5_2019_v10n1_69_t0004.png 이미지

Table 5. The compositions of the mild steel surface before and after corrosion in the test solutions in the absence andpresence of 3 g/L OPEO inhibitor.

E1JTC5_2019_v10n1_69_t0005.png 이미지

Table 6. Data analysis of FTIR spectrum of the absorption film formed on the steel surface

E1JTC5_2019_v10n1_69_t0006.png 이미지

References

  1. Shefali Dahiya, Suman Lata, Parmod Kumar and Rajeev Kumar, Corros Rev, 2016, 34(4), 241-248. https://doi.org/10.1515/corrrev-2016-0015
  2. A.S. Fouda, M. T. Mohamed and M. R. Soltan, J. Electrochem. Sci. Technol., 2013, 4(2), 61-70. https://doi.org/10.33961/JECST.2013.4.2.61
  3. N. A. A. Ghany, M. F. Shehata, R. M. Saleh and A. A. E. Hosary, Mater. Corros., 2016, 68(3), 355-360. https://doi.org/10.1002/maco.201609146
  4. S. Papavinasam, 'Uhlig's Corrosion Handbook', 3rd edn John Wiley & Sons, Inc, Place PUblished, 2011.
  5. S. Banerjee, V. Srivastava and M. M. Singh, Corros. Sci., 2012, 59, 35-41. https://doi.org/10.1016/j.corsci.2012.02.009
  6. Jamiu K. Odusote and O. M. Ajayi, J. Electrochem. Sci. Technol., 2013, 4(2), 81-87. https://doi.org/10.33961/JECST.2013.4.2.81
  7. R. M. Saleh, A. A. Ismail and A. H. E. Hosary, Br. Corros. J., 1982, 17(3), 131-135. https://doi.org/10.1179/000705982798274345
  8. E. E. Oguzie, Corros. Sci., 2008, 50(11), 2993-2998. https://doi.org/10.1016/j.corsci.2008.08.004
  9. A. Batah, A. Anejjar, L. Bammou, M. Belkhaouda, R. Salghi and L. Bazzi, J. Mater. Environ. Sci., 2017, 8(9), 3070-3080.
  10. W. Yang, Q. Wang, K. Xu, Y. Yin, H. Bao, X. Li, L. Niu and S. Chen, Materials, 2017, 10(8), 956. https://doi.org/10.3390/ma10080956
  11. M. A. Quraishi, D. K. Yadav and I. Ahamad, The Open Corros. J., 2009, 2(1), 56-60. https://doi.org/10.2174/1876503300902010056
  12. A. Singh, E. E. Ebenso and M. A. Quraishi, Int. J. Corros., 2012, 2012.
  13. B. R. Pandian, A. K. Qureshi, A. A. Rahim, H. Osman and K. Awang, Corros. Sci., 2013, 69, 292-301. https://doi.org/10.1016/j.corsci.2012.11.042
  14. J. C. da Rocha, J. A. da Cunha Ponciano Gomes and E. D'Elia, Corros. Sci., 2010, 52(7), 2341-2348. https://doi.org/10.1016/j.corsci.2010.03.033
  15. E. Chaieb, A. Bouyanzer, B. Hammouti and M. Berrabah, Acta Phys. Chim. Sin., 2009, 25(7), 1254-1258. https://doi.org/10.3866/PKU.WHXB20090709
  16. J. C. d. Rocha, J. A. d. C. P. Gomes and E. D'Elia, Mater. Res., 2014, 17(6), 1581-1587. https://doi.org/10.1590/1516-1439.285014
  17. A. Batah, M. Belkhaouda, L. Bammou, A. Anejjar, R. Salghi and B. Hammouti, Mor. J. Chem., 2017, 5(4), 580-589.
  18. I. B. Obot and N. O. Obi-Egbedi, Int. J. Electrochem. Sci., 2009, 4(9), 1277-1288.
  19. A. M. Al-Fakih, M. Aziz and H. M. Sirat, J. Mater. Environ. Sci., 2015, 6(5), 1480-1487.
  20. H. Elmsellem, M. H. Youssouf, A. Aouniti, T. Ben Hadda, A. Chetouani and B. Hammouti, Russ. J. Appl. Chem., 2014, 87(6), 744-753. https://doi.org/10.1134/S1070427214060147
  21. A. Y. El-Etre and M. Abdallah, Corros. Sci., 2000, 42(4), 731-738. https://doi.org/10.1016/S0010-938X(99)00106-7
  22. S. K. Shukla, M. A. Quraishi and E. E. Ebenso, Int. J. Electrochem. Sci., 2011, 6, 2912-2931.
  23. K. S. Ashish, S. K. Shukla and M. A. Quraishi, Int. J. Electrochem. Sci., 2011, 6, 5802-55814.
  24. A. S. Fouda, A. M. El-Defrawy and M. W. El-Sherbeni, J. Electrochem. Sci. Technol., 2013, 4(2), 47-56. https://doi.org/10.33961/JECST.2013.4.2.47
  25. Corrosion of metals and alloys - Removal of corrosion products from corrosion test specimens, ISO, Geneva, Swetzeland, 1991.
  26. B. D. Mert, M. Erman Mert, G. Kardas and B. Yazici, Corros. Sci., 2011, 53(12), 4265-4272. https://doi.org/10.1016/j.corsci.2011.08.038
  27. Z. Tao, W. He, S. Wang, S. Zhang and G. Zhou, J. Mater. Eng. Perform., 2013, 22(3), 774-781. https://doi.org/10.1007/s11665-012-0321-1
  28. S. A. Umoren, Y. Li and F. H. Wang, Corros. Sci., 2010, 52(5), 1777-1786. https://doi.org/10.1016/j.corsci.2010.01.026
  29. M. Lebrini, F. Robert, P. A. Blandinieres and C. Roos, Int. J. Electrochem. Sci., 2011, 6(7), 2443-2460.
  30. Sumithra Kadapparambil, Kavita Yadav, M. Ramachandran and N. V. Selvam, Corros. Rev., 2017.
  31. R. Solmaz, Corros. Sci., 2014, 81, 75-84. https://doi.org/10.1016/j.corsci.2013.12.006
  32. P. M. Ejikeme, S. G. Umana, I. J. Alinnor, O. D. Onukwuli and M. C. Menkiti, Am. J. Mater. Sci., 2014, 4(5), 194-201.
  33. A. Khamis, M. M. Saleh and M. I. Awad, Int. J. Electrochem. Sci., 2012, 7, 10487-10500.
  34. A. Ousslim, A. Chetouani, B. Hammouti, K. Bekkouch, S. S. Al-Deyab, A. Aouniti and A. Elidrissi, Int. J. Electrochem. Sci., 2013, 8(4), 5980-6004.
  35. F. S. de Souza and A. Spinelli, Corros. Sci., 2009, 51(3), 642-649. https://doi.org/10.1016/j.corsci.2008.12.013
  36. S. Ambrish, V. K. Singh and M. A. Quraishi, Int. J. Corros., 2010, 2010.
  37. I. B. Obot, N. O. Obi-Egbedi, S. A. Umoren and E. E. Ebenso, Int. J. Electrochem. Sci., 2010, 5(7), 994-1007.
  38. G. Karthik and M. Sundaravadivelu, ISRN Electrochemistry, 2013, Article ID 403542, 10 pages.
  39. N. O. Eddy and S. A. Odoemelam, Adv. in Nat. Appl. Sci. 2008, 2(3), 225-232.
  40. F. E. Abeng, V. D. Idim, O. E. Obono and T. O. Magu, World Scientific News, 2017, 77(2), 298-313.
  41. R. Saratha, S. V. Priya and P. Thilagavathy, E-J. Chem., 2009, 6(3), 785-795. https://doi.org/10.1155/2009/107807
  42. E. A. Noor and A. H. Al-Moubaraki, Int. J. Electrochem. Sci., 2008, 3(1), 806-818.
  43. O. A., S. M. Hoseinieh, M. Peikari, S. R. Shadizadeh and S. J. Hashemi, Corros. Sci., 2009, 51(9), 1935-1949. https://doi.org/10.1016/j.corsci.2009.05.024
  44. Nnabuk Okon Eddy, Paul Ameh, Casmir E. Gimba and a. E. E. Ebenso, Int. J. Electrochem. Sci., 2011, 6, 5815-5829.
  45. S. Leelavathi and R. Rajalakshmi, J. Mater. Environ. Sci. , 2013, 4(5), 625-638.
  46. Y. Yetri, Emriadi, N. Jamarun and Gunawarman, Int. Conf. Biol., Chem. Environ. Sci., 2014, 15-19.
  47. A. Bewick, M. Kalaji and G. Larramona, J. Electroanal. Chem., 1991, 318, 207-221. https://doi.org/10.1016/0022-0728(91)85304-8
  48. L. L. Liao, S. Mo, J. L. Lei, H. Q. Luo and N. B. Li, J. Colloid Interface Sci., 2016, 474, 68-77. https://doi.org/10.1016/j.jcis.2016.04.015