DOI QR코드

DOI QR Code

Effect of Biological and Liquid Hot Water Pretreatments on Ethanol Yield from Mengkuang (Pandanus artocarpus Griff)

  • Yanti, Hikma (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University) ;
  • Syafii, Wasrin (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University) ;
  • Wistara, Nyoman J (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University) ;
  • Febrianto, Fauzi (Department of Forest Products, Faculty of Forestry, Bogor Agricultural University) ;
  • Kim, Nam Hun (Department of Forest Biomaterials Engineering, College of Forest and Environmental Science, Kangwon National University)
  • Received : 2018.09.28
  • Accepted : 2019.02.12
  • Published : 2019.03.25

Abstract

This study aimed to increase the sugar and ethanol yield from the mengkuang plant biomass through biological and liquid hot water (LHW) pretreatment and their combination. The results showed that biological pretreatments with 5% inoculum of the fungus Trametes versicolor resulted in the highest alpha cellulose content incubated for 30 days, and 10% inoculum resulted in the lowest lignin content. LHW pretreatment decreased the hemicellulose content of pulps from 10.17% to 9.99%. T. versicolor altered the structure of the mengkuang pulp by degrading the lignin and lignocellulose matrix. The resulting delignification and cellulose degradation facilitate the hydrolysis of cellulose into sugars. The alpha cellulose content after biological-LHW pretreatment was higher (78.99%) compared to LHW-biological pretreatment (76.85%). Scanning electron microscopy analysis showed that biological-LHW combinated treatment degrades the cell wall structures. The ethanol yield for biological-LHW pretreated sample was observed 43.86% (13.11 g/L ethanol by weight of the substrate, which is much higher than that of LHW-biological pretreatment (34.02%; 9.097 g/L). The highest reducing sugar content about 45.10% was observed with a resulting ethanol content of 15.5 g/L at LHW pretreatment temperature of $180^{\circ}C$ for 30 min.

Keywords

HMJGBP_2019_v47n2_145_f0001.png 이미지

Fig. 1. FTIR spectra of mengkuang pulp after biological pretreatment.

HMJGBP_2019_v47n2_145_f0002.png 이미지

Fig. 2. FTIR spectra of mengkuang pulp after LHW pretreatment.

HMJGBP_2019_v47n2_145_f0003.png 이미지

Fig. 3. FTIR spectra of mengkuang pulp after biological–LHW pretreatment.

HMJGBP_2019_v47n2_145_f0004.png 이미지

Fig. 4. FTIR spectra of mengkuang pulp after LHW–biological pretreatment.

HMJGBP_2019_v47n2_145_f0005.png 이미지

Fig. 5. SEM images of mengkuang pulp after biological pretreatment. (a) Control, (b) biological pretreatment with 10% inoculum for 15 days, (c) biological pretreatment with 10% inoculum for 30 days, and (d) biological pretreatment with 10% inoculum for 45 days.

HMJGBP_2019_v47n2_145_f0006.png 이미지

Fig. 6. SEM images of mengkuang pulp after LHW pretreatment. (a) Control, (b) 140°C for 30 min, (c) 160°C for 30 min, and (d) 180°C for 30 min.

HMJGBP_2019_v47n2_145_f0007.png 이미지

Fig. 7. SEM images of mengkuang pulp after biological–LHW pretreatment. (a) Control, (b) biological pretreatment with 10% inoculum for 30 days and LHW at 180°C for 20 min, (c) biological pretreatment with 10% inoculum 30 days and LHW at 180°C for 30 min, and (d) biological pretreatment with 10% inoculum for 30 days and LHW at 180°C for 40 min.

HMJGBP_2019_v47n2_145_f0008.png 이미지

Fig. 8. Reducing sugars resulting from SSF after biological–LHW pretreatment.

HMJGBP_2019_v47n2_145_f0009.png 이미지

Fig. 9. Reducing sugars resulting from SSF after LHW–biological pretreatment.

HMJGBP_2019_v47n2_145_f0010.png 이미지

Fig. 10. Ethanol content (EtOH (v/v)% × 10 × 0.789) from SSF after (a) biological–LHW and (b) LHW–biological pretreatments.

Table 1. chemical components of mengkuang pulp after biological pretreatment.

HMJGBP_2019_v47n2_145_t0001.png 이미지

Table 2. Chemical components of mengkuang pulp after LHW pretreatment.

HMJGBP_2019_v47n2_145_t0002.png 이미지

Table 3. Chemical components of mengkuang pulp after biological-LHW pretreatment.

HMJGBP_2019_v47n2_145_t0003.png 이미지

Table 4. Chemical components of mengkuang pulp after LHW- biological pretreatment.

HMJGBP_2019_v47n2_145_t0004.png 이미지

References

  1. Amin, Y., Syafii, W., Wistara, N.J., Prasetya, B. 2014. Pengingkatan rendemen gula pereduksi dari kayu jabon (Anthocephalus cadamba Miq.) dengan perlakuan air kapur (Ca(OH)). Jurnal Ilmu dan Teknologi Kayu Tropis 12(2): 196-206.
  2. Browning, B.L. 1967. Methods of Wood Chemistry. Volume ke-2. New York (US): Interscience.
  3. Canilha, L., Chandel, A.K., Milessi, T.S., Antunes, F.A.F., Freitas, W.L.C., Felipe, A.G.A., Silva, S.S. 2012. Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. Journal of Biomedicine and Biotechnology, 2012. 15pages.
  4. Cao, W., Chen, S., Ronghou, L., Renzhan, Y., Xiaowu, W. 2012. Comparison of Effects of Five Pretreatment Methods on Enhancing the Enzymatic Digestibility and Ethanol Production from Sweet Sorghum Bagasse. Bioresource Technology 111: 215-221. https://doi.org/10.1016/j.biortech.2012.02.034
  5. Chen, H., Yejun, H., Jian, X. 2010. Simultaneous Saccharification and Fermentation of Steam Expolded Wheat Straw Pretreated with Alkalie Peroxide. Process Biochemistry 43:1462-1466. https://doi.org/10.1016/j.procbio.2008.07.003
  6. Dence, C.W. 1992. The Determination of Lignin. Di dalam: Lin SY, Dence CW, editor. Methods in Lignin Chemistry. Heidelberg (DE): Springer-Verlag. Hlm. 33-61.
  7. Dowe, N., McMillan, J. 2008. SSF Experimental Protocols-LignocellulosicBiomass Hydrolysis and Fermentation. Technical Report NREL/TP-510 42630.Colorado,US.
  8. Erdei, B., Barta, Z., Sipos, B., Reczey, K., Galbe, M., Zacchi, G. 2010. Ethanol production from mixtures of wheat straw and wheat meal. Biotechnology for Biofuels 3(16): 1-9. https://doi.org/10.1186/1754-6834-3-1
  9. Falah, F., Fatriasari, W., Ermawar, R.A., Nugroho, D.T.A., Hermiati, E. 2011. Effect of corn steep liquor on bamboo biochemical pulping using Phanerochaete chrysosporium. Jurnal Ilmu dan Teknologi Kayu Tropis 9(2): 111-125.
  10. Fajriutami, Y., Fatriasari, W., Hermiati, E. 2016. Pengaruh praperlakuan basa pada ampas tebu terhadap karakteristik pulp dan produksi gula pereduksi. Jurnal Riset Industri 10(3): 147-161.
  11. Fatriasari, W., Ermawar, R.A., Falah, F., Yanto, D.H.Y., Adi, D.T.N., Anita, S.H., Hermiati, E., 2011. Kraft and soda pulping of white rot pretreated betung bamboo. Jurnal Ilmu dan Teknologi Kayu Tropis 9(1): 42-55.
  12. Fatriasari, W., Syafii, W., Wistara, N.J., Syamsu, K., Prasetya, B. 2014. The characteristic chanes of betung bamboo (Dendrocalamus asper) pretreated by fungal pretreatment. International Journal of Renewable Energy Development 3(2): 133-143.
  13. Ferraz, A., Guerra, A. Mendoca, A.R., Masarin, F., Vicentim, M.P., Aguiar, A., Pavan, P.C. 2008. Technological advances and mechanistic basis for fungal biopulping. Enzyme and Microbial Technology 43: 178-185. https://doi.org/10.1016/j.enzmictec.2007.10.002
  14. Gao, Y., Xu, J., Zhang, Y., Yu, Q., Zhenhong, Y., Liu, Y. 2013. Effect of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis. Journal Bioresource Technology 144: 396-400. https://doi.org/10.1016/j.biortech.2013.06.036
  15. Giles, R.L, Galloway, E.R., Elliot, G.D. Parrow, M.W. 2011. Oxygen activation during oxidation of methoxyhydroquinones by laccase from Pleurotus eryngii. Bioresource Technology 102: 8011-8016. https://doi.org/10.1016/j.biortech.2011.06.031
  16. Goshadrou, A., Karimi, K., Taherzadeh, M.J. 2011. Improvement of sweet sorghum bagasse hydrolysis by alkali and acidic pretreatment. Wood Renewable Energy Congress. Bioenergy Technology. Linkoping Sweden 8-13 May. 374-380.
  17. Hadisuparto, H., Wardenaar, E., Yusro, F., Yanti, H. 2011. Potensi tumbuhan mengkuang dari hutan rawa gambut Kalimantan Barat Sebagai Bahan Baku Pulp dan Kertas. Jurnal Penelitian Universitas Tanjungpura 22(2): 42-57.
  18. Hendriks, A.T.W.M., Zeeman, G. 2009. Pretreatment enhance the digestibility of lignocellulosic biomass: techno-economic performance in short-, middle-, and long-term. Journal of Biomass and Bioenergy 28: 384-410.
  19. Heo, J.S., Choi, J.W. 2017. Study on utilization and prospect of lignocellulosic bioethanol in ASEAN countries. Journal of the Korean Wood Science and Technology 45(5): 588-598. https://doi.org/10.5658/WOOD.2017.45.5.588
  20. Hong, C.Y., Park, S.Y., Kim, S.H., Lee, S.Y., Ryu, S.H., Choi, I.G. 2016. Biomodification of ethanol organosolv lignin by Abortiporus biennis and its structural change by addition of reducingagent. Journal of the Korean Wood Science and Technology 44(1): 124-134. https://doi.org/10.5658/WOOD.2016.44.1.124
  21. Hongdan, Z., Shaohua, X., Subin, W. 2013. Enhancement of enzymatic saccharification of sugarcane bagasse by liquid hot water pretreatment. Journal Bioresource Technology 143(2016): 391-396. https://doi.org/10.1016/j.biortech.2013.05.103
  22. Hu, Z., Wen, Z. 2008. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal 38: 369-378. https://doi.org/10.1016/j.bej.2007.08.001
  23. Li, H.Q., Li, C.L., Sang, T., Xu, J. 2013. Pretreatment on Micanthus lutarioriparius by liquid hot water for efficient ethanol production. Biotechnology for Biofuels 6: 76. https://doi.org/10.1186/1754-6834-6-76
  24. Li, C., Cheng, G., Balan, V., Kent, M.S., Ong, M., Chundawat, S.P.S., Sousa, L.D., Melnichenco, Y.B., Dale, B.E., Simmons, B.A. 2011. Influence of physicochemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology 102(13): 6928-6936. https://doi.org/10.1016/j.biortech.2011.04.005
  25. Li, X., Ximenes, E., Kim, Y., Slinger, M., Meilan, R., Ladisc, M., Chapple, C. 2010. Lignin monomer composition affects arabidopsis cell-wall degradability after liquid hot water praperlakuan. Biotechnology for Biofuels 3: 27. https://doi.org/10.1186/1754-6834-3-27
  26. Linde, M., Galbe, M., Zacchi, G. 2008. Bioethanol production from non-starch carbohydrate residues in process streams from a dry-mill ethanol plant. Journal Bioresource Technology 99(2008): 6505-6511. https://doi.org/10.1016/j.biortech.2007.11.032
  27. Long, Sun, S., Jia, L.W., Ming, G.M., Xian, L.S., Run, C.S. 2014. Integated Biorefinery Based on Hydrothermal and Alkaline Treatments: Investigation of Sorghum Hemicelluloses. Carbohydrate Polymers 111: 663-669. https://doi.org/10.1016/j.carbpol.2014.04.099
  28. Michelin, M., Teixeira, J.A. 2016. Liquid hot water pretreatment of multi feedstocks and enzymatic hydrolysis of solids obtains thereof. Bioresource Technology 216: 862-869. https://doi.org/10.1016/j.biortech.2016.06.018
  29. Mosier, N., Wyman, C., Dale, B., Elander, R., Holtzapple, Y.Y.L.M., Ladisch, M. 2005. Features of promising technologies for pretreatmen of lignocellulosic biomass. Bioresource Technology 96: 673-686. https://doi.org/10.1016/j.biortech.2004.06.025
  30. Nazarpour, F., Abdullah, D.K., Abdullah, N., Zamiri, R. 2013. Evaluation of biological pretreatment of rubberwood with white rot fungi for enzymatic hydrolysis. Materials 6: 2059-2073. https://doi.org/10.3390/ma6052059
  31. Nelson, M.L., O'Connor RT. 1964. Relation of certain infared bands to cellulose crystallinity and crystal lattice type. Part II a new infared ratio for estimation of crystallinity in cellulose I and II. Journal of Applied Polymer Science 8: 1325-1341. https://doi.org/10.1002/app.1964.070080323
  32. Pandey, K.K., Pitman, A.J. 2003. FTIR studies of the changes in wood chemistry flowing decay by brown-rot and white-rot fungi. International Biodeterioration 52: 151-160. https://doi.org/10.1016/S0964-8305(03)00052-0
  33. Pu, Y., Hu, F., Huang, F., Davison, B.H., Ragauskas, A.J. 2013. Assessing the molecular structure for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnology for Biofuels 6(15): 1-13. https://doi.org/10.1186/1754-6834-6-1
  34. Punyamurthy, R., Sampathkumar, D., Bennehalli, B., Srinivasa, C.V. 2013. Influence of Esterification on the Water Absorption Property of Single Abaca Fiber. Chemical Science Transactions 2: 413-422. https://doi.org/10.7598/cst2013.371
  35. Qin, C., Clarke, K., Li, K. 2014. Interactive forces between lignin and cellulase as determined by atomic force microscopy. Biotechnology for Biofuels 7(65): 1-9. https://doi.org/10.1186/1754-6834-7-1
  36. Ramos, L.P. 2003. The chemistry involved in the steam treatment of lignocellulosic materials. Quimica Nova 26: 863-871. https://doi.org/10.1590/S0100-40422003000600015
  37. Ravindran, R., Jaiswal, A.K. 2015. A Comprehensive review on pretreatment strategy for lignocellulosic food industry waste: challenges and opportunities. Journal Bioresource Technology 199: 92-102. https://doi.org/10.1016/j.biortech.2015.07.106
  38. Sierra, R., Granda, C.B., Holtzapple, M.T. 2009. Lime Pretreatment. Di dalam: Mielenz J R, editor. Biofuels:Methods in Molecular Biology. 581: 115-124. Humana Press
  39. [TAPPI] The Technical Association of the Pulp and Paper Industry. 1997. TAPPI Test Methods. TAPPI Press-Atlanta.
  40. Um, M., Shin, G.J., Lee, J.W. 2016. Enhancement of ethanol production by the removal of fermentation inhibitors, and effect of lignin-derived inhibitors on fermentation. Journal of the Korean Wood Science and Technology 44(3): 389-397. https://doi.org/10.5658/WOOD.2016.44.3.389
  41. Wang, L., Han, G., Zhang, Y. 2008. Comparative study of composition, structure and properties of apocynum venetum fibers under different pretreatments. Carbohydrate Polymers 69(2): 391-397 https://doi.org/10.1016/j.carbpol.2006.12.028
  42. Wang, W., Zhuang, X., Yuan, Z., Qi, W., Yu, Q., Wang, Q. 2016. Structural changes of lignin after liquid hot water pretreatment and its effect on the enzymatic hydrolysis. BioMed Research International 2016: 7pages.
  43. Wistara, N.J., Carolina, A., Pulungan, W.S., Emil, N., Lee, S.H., Kim, N.H. 2015. Effect oftree age and active alkali on kraft pulping of white jabon. Journal of the Korean Wood Science and Technology 43(5): 566-577. https://doi.org/10.5658/WOOD.2015.43.5.566
  44. Wistara, N.J., Pelawi, R., Fatriasari, W. 2016. The Effect of Lignin Content and Freeness of Pulp on the Bioethanol Productivity of Jabon Wood. Waste and Biomass Valorization 7(5): 1141-1146. https://doi.org/10.1007/s12649-016-9510-8
  45. Yang, H., Wang, K., Ma, J., Yang, J., Shi, Z. 2017. Liquid hot water pretreatment of wheat straw for full carbohydrates biorefinery. BioResources 12(3): 6342-6352.
  46. Yanti, H., Syafii, W., Wistara, N.J., Febrianto, F. 2018. Sifat dasar tanaman mengkuang (Pandanus artocarpus Griff). Jurnal Ilmu dan Teknologi Kayu Tropis. 16(1): 1-14.
  47. Yu, H., Zhang, X., Song, L.K.J., Xu, C., Du, W., Zhang, J. 2010. Evaluation of white rot fungi assisted alkaline/oxidative pretreatment of corn straw undergoing enzymatic hydrolysis by cellulose. Journal of Bioscience and Bioengineering 110(6): 660-664. https://doi.org/10.1016/j.jbiosc.2010.08.002
  48. Yu, Q., Zhuang, X.,, Yuan, Z., Wang, W., Qi, W., Wang, Q., Tan, X. 2011. Step change flow rate liquid hot water pretreatment of sweet sorghum bagasse for enhancement of total sugar recovery. Applied Energy 88(7): 2472-2479. https://doi.org/10.1016/j.apenergy.2011.01.031
  49. Yu, Q., Zhuang, X., Wang, Q., Qi, W., Tan, X., Yuan, Z. 2012. Hydrolysis of sweet sorghum bagasse and eucalyptus wood chips with liquid hot water. Journal Bioresource Technology 116(2012): 220-225. https://doi.org/10.1016/j.biortech.2012.04.031
  50. Yu, Q., Zhuang, X., Lv, S., He, M., Zhang, Y., Yuan, Z., Qi, W., Wang, Q., Wang, W., Tan, X. 2013. Liquid hot water pretreatment of sugarcane bagasse and its compatison with chemical pretreatment methods for the sugar recovery and structural changes. Journal Bioresource Technology 129(2013): 592-598. https://doi.org/10.1016/j.biortech.2012.11.099
  51. Yu, H., Xing, Y., Lei, Fuhou., Liu, Z., Liu, Z., Jiang, J. 2014. Improvement of the enzymatic hydrolysis of furfural residues by pretreatment with combined. green liquor and ethanol organosolv. Journal Bioresource Technology 167: 46-52. https://doi.org/10.1016/j.biortech.2014.05.111
  52. Zhang, X., Xu, C., Wang, H. 2007. Praperlakuan of Bamboo Residues with Coriolus versicolor for Enzymatic Hydrolysis. Journal of Bioscience and Bioengineering 104(2): 149-151. https://doi.org/10.1263/jbb.104.149
  53. Zhuang, X., Wang, W., Yu, Q., Qi, W., Wang, Q., Tan, X., Zhou, G., Yuan, Z. 2015. Liquid hot water pretreatment of lignocellulosic biomass for bioethanolproduction accompanying with high valuable products. Journal Bioresource Technology 199: 68-75.