DOI QR코드

DOI QR Code

Data-driven Interactive Planning Methodology for EPC Plant Projects

EPC 플랜트 프로젝트의 초기 공정계획을 위한 통합 데이터 활용 방안

  • Wang, Hankyeom (School of Design and Architectural Engineering, Korea University of Technology and Education(Koreatech)) ;
  • Choi, Jaehyun (School of Design and Architectural Engineering, Korea University of Technology and Education (Koreatech))
  • Received : 2018.11.05
  • Accepted : 2018.12.11
  • Published : 2019.03.31

Abstract

EPC plant projects are large and complex, requiring systematic working methodologies, accumulated data, and thorough planning through communications between the entities. In this study, the method of extracting the process planning information using asset data of the plant project and using it to present the initial process plan is presented through the concept of IAP(Interactive Planning). In order to carry out the effective IAP at the early stage of the project, this study extracted the schedule element information from the asset data, created the process plan for each work package, and applied it to the sample project case. Through the proposed IAP methodology, it is possible to promote the utilization of asset data, to identify schedule risks, and to develop countermeasures, which can form the basis for establishing the process management strategy to successfully complete the project.

EPC 플랜트 프로젝트는 규모와 복잡성 측면에서 시공 이전 단계의 계획 업무가 프로젝트 성패에 큰 영향을 미치기 때문에 프로젝트에 참여하는 주체간의 긴밀한 협력과 의사소통이 필수적이다. 본 연구는 이러한 필요성을 기반으로 플랜트 프로젝트에서 자산데이터를 활용하여 공정계획의 요소정보를 추출하고, 이를 패키지로 구성하여 초기 공정계획을 수행하는 방법론을 상호계획 (IAP, Interactive Planning)의 개념을 통해 제시한다. 프로젝트 초기단계에서 효과적인 IAP를 수행하기 위하여 자산 데이터로부터 공정요소정보를 추출하고 작업 패키지 단위의 공정 계획을 작성하며 작성된 공정계획을 평가하는 세 가지 단계를 제시하였으며 이를 샘플 프로젝트 사례에 적용하였다. 제시된 IAP 방법론을 통해 자산 데이터 활용성 증진과 공정 리스크 사전식별 및 대응책 개발을 도모할 수 있으며 이는 프로젝트를 성공적으로 완료하기 위한 공정 전략 수립의 기반이 될 수 있다.

Keywords

GGRHC4_2019_v20n2_95_f0001.png 이미지

Fig. 1. Research Process and Contents

GGRHC4_2019_v20n2_95_f0002.png 이미지

Fig. 2. Planning by Work Package

GGRHC4_2019_v20n2_95_f0003.png 이미지

Fig. 3. Milestone Schedule of Sample Project

GGRHC4_2019_v20n2_95_f0004.png 이미지

Fig. 4. Distribution of Activities for Civil Works

GGRHC4_2019_v20n2_95_f0005.png 이미지

Fig. 5. Distribution of Activities for Architecture Works

GGRHC4_2019_v20n2_95_f0006.png 이미지

Fig. 6. Distribution of Activities for Steel Structure Works

GGRHC4_2019_v20n2_95_f0007.png 이미지

Fig. 7. Distribution of Activities for Mechanical Works

GGRHC4_2019_v20n2_95_f0008.png 이미지

Fig. 8. Distribution of Activities for Electrical Works

GGRHC4_2019_v20n2_95_f0009.png 이미지

Fig. 9. Distribution of Activities for Piping Works

GGRHC4_2019_v20n2_95_f0010.png 이미지

Fig. 10. Distribution of Activities for Instrument Works

GGRHC4_2019_v20n2_95_f0011.png 이미지

Fig. 11. Distribution of Activities for Painting & Insulation Works

Table 1. Types of Industrial Plant Projects (Lee, 2013)

GGRHC4_2019_v20n2_95_t0001.png 이미지

Table 2. Units and Disciplines Included in the Sample Project

GGRHC4_2019_v20n2_95_t0002.png 이미지

Table 3. Work Packages per Discipline

GGRHC4_2019_v20n2_95_t0003.png 이미지

Table 4. Control Building Work Packages

GGRHC4_2019_v20n2_95_t0004.png 이미지

Table 5. Process Unit Work Packages

GGRHC4_2019_v20n2_95_t0005.png 이미지

Table 6. Storage Unit Work Packages

GGRHC4_2019_v20n2_95_t0006.png 이미지

Table 7. Power Supply Unit Work Packages

GGRHC4_2019_v20n2_95_t0007.png 이미지

Table 8. Water Treatment Unit Work Packages

GGRHC4_2019_v20n2_95_t0008.png 이미지

Table 9. Number of Activities Belonging to the Extraction Criteria by Type of Discipline

GGRHC4_2019_v20n2_95_t0009.png 이미지

References

  1. Kang, N., and Choi, J. (2017). "Construction Cost-Schedule Integration Management Methodolgy by using Progress Integration Unit." Korean Journal of Construction Engineering and Management, KICEM, 18(3), pp. 42-52. https://doi.org/10.6106/KJCEM.2017.18.3.042
  2. Construction Industry Institute (2013). Construction Work Packages Best Practice, CWP Best Practice Report.
  3. Flood, I. (2007). "Project Planning Using an Interactive, Structured Modeling Environment." Proceedings of the 2007 Winter Simulation Conference, Florida, USA, pp. 2019-2027.
  4. Hinze, J. (2004). Construction Planning and Scheduling, Pearson Education, Florida, USA, pp. 17-20.
  5. Jagbeck, A. (1994). "MDA Planner: Interactive Planning Tool Using Product Models and Construction Methods." Journal of Computing in Civil Engineering, 8(4), pp. 536-554. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:4(536)
  6. Kim, K.S. (2017). "A Case Study for Improving Management Efficiency of Overseas Power Plant Projects - Focusing on Integration Management of Middle East and Africa Power Plant EPC Project." MS Thesis, Chung-Ang Univ., Seoul, Korea.
  7. Koiso-Kanttila, J., Soikkeli, A., and Aapaoja, A. (2014). "Interactive Planning of Suburban Apartment Buildings." International Scholarly and Scientific Research & Innovation, 8(10), pp. 1031-1038.
  8. Lee, G.S., and Choi, J. (2013). "Project Risk Assessment Through Construction Sequence Analyses for Industrial Plant Construction Projects." Korean Journal of Construction Engineering and Management, KICEM, 14(4), pp. 140-152. https://doi.org/10.6106/KJCEM.2013.14.4.140
  9. Lee, J.H. (2009). "Indexing Method for Target Administration and Performance Measuring in Plant Projects." MS Thesis, Han-Yang University Graduate School of Engineering, Seoul, Korea.
  10. Pellegrino, S. (2017). Introduction to CII's Advanced Work Packaging - An Industry Best Practice, Long International, Colorado, USA, pp. 1-22.
  11. Ryan, G. (2014). Advanced Work Packaging Procedure, Insight-AWP, pp. 5-6.
  12. Seo, J.P. (2017). "The Development of Bidding Phase Risk Response System Model for EPC Power Plant Projects." Soong-Sil University Graduate School, Seoul, Korea.
  13. Steiner, B., Mousavian, E., Saradj, F.M., Wimmer, M., and Musialski, P. (2017). "Integrated Structural-Architectural Design for Interactive Planning." Conputer Graphics Forum, 36(8), pp. 80-94.