DOI QR코드

DOI QR Code

Synthesis of Monogallic Acid Conjugates of Quercetin at the 3-, 7-, and 4'-Hydroxyl Groups through Selective Protection of Hydroxyl Groups

  • Jang, Jongyun (Department of Pharmaceutical Science and Technology, Natural Science Research Institute & Advanced Healthcare Industry Research Center, Catholic University of Daegu) ;
  • Kang, Dong Wook (Department of Pharmaceutical Science and Technology, Natural Science Research Institute & Advanced Healthcare Industry Research Center, Catholic University of Daegu)
  • Received : 2019.01.06
  • Accepted : 2019.01.24
  • Published : 2019.04.20

Abstract

Keywords

JCGMDC_2019_v63n2_138_f0001.png 이미지

Figure 1. Chemical structures of EGCG, quercetin, isoquercetin, gallic acid (1) and quercetin-3-gallate (2).

JCGMDC_2019_v63n2_138_f0002.png 이미지

Scheme 1. Synthesis of quercetin-3-gallate. Reagents and reactions: (i) BnBr, K2CO3, DMF, rt, 12 h, 39%; (ii) gallic acid tribenzyl ether, EDC, DMAP, methylene chloride, 12 h, 82%; (iii) Pd/C, H2, THF/EtOH (1:1), 6 h, 60%.

JCGMDC_2019_v63n2_138_f0003.png 이미지

Scheme 2. Synthesis of quercetin-7-gallate. Reagents and reactions: (i) Ph2CCl2, Ph2O, 170 ℃, 12 h, 40%; (ii) BnBr, K2CO3, DMF, 12 h, 50%; (iii) gallic acid tribenzyl ether, EDC, DMAP, methylene chloride, rt, 52%; (iv) Pd/C, H2, THF/ EtOH (1:1), 6 h, 30%.

JCGMDC_2019_v63n2_138_f0004.png 이미지

Scheme 3. Synthesis of quercetin-4′-gallate. Reagents and reactions: (i) BnBr, K2CO3, DMF, 12 h; (ii) AcOH/ H2O (80:20), 180 ℃, 6 h, 83%; (iii) Ac2O, pyridine, 70 ℃, 3 h, 56%; (iv) BnBr, K2CO3, DMF, rt, 12 h, 35%; (v) gallic acid tribenzyl ether, EDC, DMAP, methylene chloride, rt, 12 h, 90%; (vi) Pd/C, H2, THF/ EtOH (1:1), 6 h, 41%.

References

  1. Bohm, B. A. Introduction to Flavonoids; Harwood Academic: Amsterdam, 1998.
  2. Packer, L. In Flavonoids and Other Polyphenols. Methods in Enzymology; Packer L., Ed.; Academic Press: San Diego, 2001; Vol. 335, p 3.
  3. Ying, L.; Yan, F.; Williams, B. R. G.; Xu, P.; Li, X.; Zhao, Y.; Hu, Y.; Wang, Y.; Xu, D.; Dai, J. Clin. Exp. Pharmacol. Physiol. 2018, 45, 58. https://doi.org/10.1111/1440-1681.12854
  4. Johnson, M. K.; Loo, G. Mutat. Res., DNA Repair 2000, 459, 211. https://doi.org/10.1016/S0921-8777(99)00074-9
  5. Choi, Y. J.; Jeong, Y. J.; Lee, Y. J.; Kwon, H. M.; Kang, Y. H. J. Nutr. 2005, 135, 707. https://doi.org/10.1093/jn/135.4.707
  6. Thapa, M.; Kim, Y.; Desper, J.; Chang, K. O.; Hua, D. H. Bioorg. Med. Chem. Lett. 2012, 22, 353. https://doi.org/10.1016/j.bmcl.2011.10.119
  7. Song, J. M.; Lee, K. H.; Seong, B. L. Antiviral Res. 2005, 68, 66. https://doi.org/10.1016/j.antiviral.2005.06.010
  8. Hu, J.; Webster, D.; Cao, J.; Shao, A. Regul. Toxicol. Pharmacol. 2018, 95, 412. https://doi.org/10.1016/j.yrtph.2018.03.019
  9. Reshmi, J. R.; Biju, S.; Reddy, M. L. P. Inorg. Chem. Commun. 2007, 10, 1091. https://doi.org/10.1016/j.inoche.2007.06.003
  10. Lee, J. Y.; Park, W. H.; Cho, M. K.; Yun, H. J.; Chung, B. H.; Pak, Y. K.; Hahn, H. G.; Cheon, S. H. Arch. Pharm. Res. 2005, 28, 142. https://doi.org/10.1007/BF02977705
  11. Lenka, R.; David, B.; Barbora, P.; Jan, V.; Marek, K.; Vladimir, K.; Jitka, U.; Albena, T.D.; Jiri, V. Chem.-Biol. Interact. 2016, 260, 58. https://doi.org/10.1016/j.cbi.2016.10.015
  12. Li, N. G.; Wang, J. X.; Liu, X. R.; Lin, C. J.; You, Q. D.; Guo, Q. L. Tetrahedron Lett. 2007, 48, 6586. https://doi.org/10.1016/j.tetlet.2007.07.005
  13. Shi, Z. H.; Li, N. G.; Tang, Y. P.; Wei, L.; Lian, Y.; Yang, J. P.; Hao, T.; Duan, J. A. Eur. J. Med. Chem. 2012, 54, 210. https://doi.org/10.1016/j.ejmech.2012.04.044