DOI QR코드

DOI QR Code

인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model

  • 투고 : 2019.05.06
  • 심사 : 2019.06.17
  • 발행 : 2019.06.30

초록

본 논문에서는 아시아 38개 컨테이너항만 들을 대상으로 10년(2007년-2016년)동안의 4개의 투입요소(선석길이, 수심, 총면적, 크레인 수)와 1개의 산출요소(컨테이너화물 처리량)를 이용하여 인공신경망모형(다층퍼셉트론, 방사형기저함수)으로 클러스터링에 영향을 미친 요소들을 파악하였으며, 1단계 교차효율성 메트릭스를 이용한 군집 수를 사회연결망모형과 타부서치모형에 적용하여 클러스터링을 파악하고 효율성을 측정하였다. 또한 2단계효율성 메트릭스모형을 이용한 클러스터링을 파악하고 효율성을 측정하여 1단계 교차효율성 메트릭스에 의한 측정결과와 비교하였다. 주요한 실증분석 결과는 다음과 같다. 첫째, 인공신경망모형에 의해서 측정해 보았을 때, 군집에 영향을 많이 미친 요소별로 제시해 보면 컨테이너화물 처리량, 선석길이와 수심, 총면적, 크레인 수의 순서로 나타났다. 둘째, 사회연결망분석에서는 2단계 교차효율성(Type IV)메트릭스에 의한 군집은 benevolent 와 aggressive 모형에서 매년 동일한 결과를 보였다. 셋째, 클러스터링 후에 1단계 교차효율성 모형에 비해서 사회연결망 모형 분석과 타부서치 모형 분석에서 국내항만들의 효율성이 거의(사회연결망 모형에서 인천항의 경우 제외) 악화되는 것으로 나타났다. 다섯째, 일반적인 투입지향, 규모수확불변하의 CCR모형의 효율성 측정결과와 비교했을 때는 클러스터링이 모든 항만들에 대해서 약 37%이상의 효율성을 증대시켰다. 여섯째, 사회연결망모형과 타부서치모형에 의해서 클러스터링 되는 항만들은 부산항(고베, 오사카, 포트클랑, 탄중 펠파스, 마닐라항), 인천항(사히드 라자히, 광양), 광양항(아카바, 포트 슐탄 카바스, 담만, 크호르 파칸, 인천)으로 나타났다. 한국항만당국은 본 연구에서 이용된 방법을 도입하여 항만개선방안을 마련해야만 한다.

The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.

키워드

참고문헌

  1. Park Ro Kyung, An Empirical Comparative Study of the Seaport Clustering Measurement Using Bootstrapped DEA and Game Cross-efficiency Models, Journal of Korea Port Economic Association. (2016), Vol.32, No.1, pp.29-58.
  2. Park Ro Kyung, A Clustering Measurement for Container Terminals between Korea and China Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, Decision Tree, and Tabu Search Models and Verification of Clustering Using Cross-Efficiency Matrix including Seosan-Daesan Port. Proceedings of the Seosan-Daesan Port International Forum. (2017) November 2-4, Seoul Intercontinental Hotel, Korea, pp.461-506.
  3. Granvetter, M.S., The Strength of Weak Ties, American Journal of Sociology. (1973), Vol.78, No.6, pp.1360-1380. https://doi.org/10.1086/225469
  4. Freeman, L.C., Centrality in Social Networks Conceptual Clarification, Social Networks. (1978),Vol.1, No.3, pp.215-239. https://doi.org/10.1016/0378-8733(78)90021-7
  5. Wasserman, S. and K. Faust, Social Network Analysis: Methods and Applications, Vol.8, Cambridge University Press (1994).
  6. Andrade, R.L.D., L.C. Rego, The Use of Nodes Attributes in Social Network Analysis with an Application to an International Trade Network, Physica A, (2018), Vol.49, pp.249-270.
  7. Park Ki Hyun, Lin Mei-Shun, and Ahn Seung Bum, Analysis of the Changes of Liner Service Netowrks by Using SNA: Focused on Incheon Port, Journal of Korea Port Economic Association. (2016), Vol.32, No.1, pp.97-122.
  8. Leem Byung Hak, Using Social Network Analysis to Measure Influence and Rank of Efficient Ports, Journal of the Korean Society of Supply Chain Management. (2012), Vol.12, No.1, pp.37-47.
  9. Glover, F., Tabu Search: A Tutorial, Interfaces, (1999), Vol.20, No.4, pp.74-94. https://doi.org/10.1287/inte.20.4.74
  10. Lu, Y., B. Cao, C. Rego and F. Glover, A Tabu Search Based Clustering Algorithm and Its Parallel Implementation on Spark, Applied Soft Computing, (2018), Vol.63, pp.97-109. https://doi.org/10.1016/j.asoc.2017.11.038
  11. Doyle, J.R. and R.H. Green,"Cross-Evaluation in DEA: Improving Discrimination Among DMUs," INFOR, (1995), Vol.33, No.3, pp. 205-222.
  12. Zhu, Li, A Novel Social Network Measurement and Perception Pattern Based on a Multi-Agent and Convolutional Neural Network, Computers and Electrical Engineering, in Press, (2017), pp. 1-17.
  13. Aladag, C.H., A New Architecture Selection Method Based on Tabu Search for Artificial Neural Networks, Expert Systems with Applications, (2011), Vol.38, pp.3287-3293. https://doi.org/10.1016/j.eswa.2010.08.114
  14. Han, S., J. Li, and Y. Liu, Tabu Search Algorithm Optimized ANN Model for Wind Power Prediction with NWP, Energy Procedia, (2011), Vol.12, pp.733-740. https://doi.org/10.1016/j.egypro.2011.10.099
  15. Chen, F.H, D.J., Chi, and Y.C., Wang, Detecting Biotechnology Industry's Earnings Management Using Bayesian Network, Principal Component Analysis, Back Propagation Neural Network, and Decision Tree, Economic Modelling, (2015), Vol.46, pp.1-10. https://doi.org/10.1016/j.econmod.2014.12.035
  16. Park Ro Kyung, A Brief Measurement Way of Container Terminals Clustering by Using the K-Means and Hierarchical Clustering(Average Linkage Using Cross-Efficiency Metrics) Methods, Proceedings of the Korea Port Economic Association Section in the Economics Joint Conference. (2017) November 2-4, Seoul Seogang University, Korea, pp.1-21.
  17. Kim Gyoung Gu, A Study on Measuring Efficiency of Container Terminals Using Cross Evaluation Model, Master's Degree Thesis. (2003), Graduate School of Pusan University of Foreign Studies.
  18. Kim Jae Hee, An Estimation of Competitive Power of Deep-Sea Fishing Industries by Using Cross Efficiency Analysis, Ocean Policy Research. (2009), Vol.24, No.1, pp.57-76. https://doi.org/10.35372/kmiopr.2009.24.11.003
  19. Park Ro Kyung, A Brief Measurement Way of Containerport Clustering Using the DEA Reference Set Model and Cross-efficiency Model-, Journal of International Trade & Commerce. (2013), Vol.9, No.7, pp.439-456. https://doi.org/10.16980/jitc.9.7.201312.439
  20. Park Ro Kyung, An Empirical Comparison and Verification Study on the Seaport Clustering Measurement Using Meta-Frontier DEA and Integer Programming Models, Journal of Korea Port Economics Association. (2017), Vol.33, No.2, pp.53-82. https://doi.org/10.38121/kpea.2017.06.33.2.53