• Title/Summary/Keyword: The First Stage Cross-efficiency Matrix Clustering Model

Search Result 2, Processing Time 0.016 seconds

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model (인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.757-772
    • /
    • 2019
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.

A Study on the Asia Container Ports Clustering Using Hierarchical Clustering(Single, Complete, Average, Centroid Linkages) Methods with Empirical Verification of Clustering Using the Silhouette Method and the Second Stage(Type II) Cross-Efficiency Matrix Clustering Model (계층적 군집분석(최단, 최장, 평균, 중앙연결)방법에 의한 아시아 컨테이너 항만의 클러스터링 측정 및 실루엣방법과 2단계(Type II) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.1
    • /
    • pp.31-70
    • /
    • 2021
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Hierarchical clustering(single, complete, average, and centroid), Silhouette, and 2SCE[the Second Stage(Type II) cross-efficiency] matrix clustering models on Asian container ports over the period 2009-2018. The models have chosen number of cranes, depth, birth length, and total area as inputs and container TEU as output. The main empirical results are as follows. First, ranking order according to the efficiency increasing ratio during the 10 years analysis shows Silhouette(0.4052 up), Hierarchical clustering(0.3097 up), and 2SCE(0.1057 up). Second, according to empirical verification of the Silhouette and 2SCE models, 3 Korean ports should be clustered with ports like Busan Port[ Dubai, Hong Kong, and Tanjung Priok], and Incheon Port and Gwangyang Port are required to cluster with most ports. Third, in terms of the ASEAN, it would be good to cluster like Busan (Singapore), Incheon Port (Tanjung Priok, Tanjung Perak, Manila, Tanjung Pelpas, Leam Chanbang, and Bangkok), and Gwangyang Port(Tanjung Priok, Tanjung Perak, Port Kang, Tanjung Pelpas, Leam Chanbang, and Bangkok). Third, Wilcoxon's signed-ranks test of models shows that all P values are significant at an average level of 0.852. It means that the average efficiency figures and ranking orders of the models are matched each other. The policy implication is that port policy makers and port operation managers should select benchmarking ports by introducing the models used in this study into the clustering of ports, compare and analyze the port development and operation plans of their ports, and introduce and implement the parts which required benchmarking quickly.