DOI QR코드

DOI QR Code

Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT

  • Nebab, Mokhtar (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University of Hassiba Benbouali of Chlef) ;
  • Atmane, Hassen Ait (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University of Hassiba Benbouali of Chlef) ;
  • Bennai, Riadh (Department of Civil Engineering, Faculty of Civil Engineering and Architecture, University of Hassiba Benbouali of Chlef) ;
  • Tounsi, Abdelouahed (Material and Hydrology Laboratory, University of Sidi Bel Abbes, Faculty of Technology, Civil Engineering Department) ;
  • Bedia, E.A. Adda (Centre of Excellence for Advanced Materials Research, King Abdulaziz University)
  • 투고 : 2018.12.19
  • 심사 : 2019.01.15
  • 발행 : 2019.03.10

초록

This paper presents an analytical study of wave propagation in simply supported graduated functional plates resting on a two-parameter elastic foundation (Pasternak model) using a new theory of high order shear strain. Unlike other higher order theories, the number of unknowns and governing equations of the present theory is only four unknown displacement functions, which is even lower than the theory of first order shear deformation (FSDT). Unlike other elements, the present work includes a new field of motion, which introduces indeterminate integral variables. The properties of the materials are assumed to be ordered in the thickness direction according to the two power law distributions in terms of volume fractions of the constituents. The wave propagation equations in FG plates are derived using the principle of virtual displacements. The analytical dispersion relation of the FG plate is obtained by solving an eigenvalue problem. Numerical examples selected from the literature are illustrated. A good agreement is obtained between the numerical results of the current theory and those of reference. A parametric study is presented to examine the effect of material gradation, thickness ratio and elastic foundation on the free vibration and phase velocity of the FG plate.

키워드

참고문헌

  1. Abualnour, M., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct., 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047
  2. Ahmed, A. (2014), ''Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory'', Int. J. Civil Struct. Environ., 4(2), 59-64.
  3. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  4. Ait Atmane, H., Tounsi, A. and Bernard, F. (2017), ''Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations'', Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x
  5. Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S. (2015), ''A computational shear displacement model for vibrational analysis of functionally graded beams with porosities'', Steel Compos. Struct., 19(2), 369-384. https://doi.org/10.12989/scs.2015.19.2.369
  6. Ait Atmane, H., Tounsi, A., Mechab, I. and Adda Bedia, E.A. (2010), ''Free vibration analysis of functionally graded plates resting on Winkler-Pasternak elastic foundations using a new shear deformation theory'', Int. J. Mech. Mater. Des., 6(2), 113-121. https://doi.org/10.1007/s10999-010-9110-x
  7. Akavci, S. (2016), ''Mechanical behavior of functionally graded sandwich plates on elastic foundation'', Compos. Part B: Eng., 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035
  8. Al Jahwari, F. and Naguib, H.E. (2016), ''Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution'', Appl. Math. Modell., 40(3), 2190-2205. https://doi.org/10.1016/j.apm.2015.09.038
  9. Aldousari, S. (2017), ''Bending analysis of different material distributions of functionally graded beam'', Appl. Phys. A. 123(4), 296. https://doi.org/10.1007/s00339-017-0854-0
  10. Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), ''Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_{2}$ nanoparticles subjected to blast load experimentally and theoretically'', Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140
  11. Arani, A.J. and Kolahchi, R. (2016), ''Buckling analysis of embedded concrete columns armed with carbon nanotubes'', Comput. Concrete, 17(5), 567-578. https://doi.org/10.12989/cac.2016.17.5.567
  12. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  13. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/SEM.2018.65.4.453
  14. Ayache, B., Bennai, R., Fahsi, B., Fourn, H., Atmane, H.A. and Tounsi, A. (2018), ''Analysis of wave propagation and free vibration of functionally graded porous material beam with a novel four variable refined theory'', Earthq. Struct., 15(4), 369-382. https://doi.org/10.12989/eas.2018.15.4.369
  15. Baferani, A.H., Saidi, A. and Ehteshami, H. (2011), ''Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation'', Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020
  16. Bakhadda, B., Bachir Bouiadjra, M., Bourada, F., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2018), ''Dynamic and bending analysis of carbon nanotube-reinforced composite plates with elastic foundation'', Wind Struct., 27(5), 311-324. https://doi.org/10.12989/WAS.2018.27.5.311
  17. Baseri, V., Jafari, G.S. and Kolahchi, R. (2016), ''Analytical solution for buckling of embedded laminated plates based on higher order shear deformation plate theory'', Steel Compos. Struct., 21(4), 883-919. https://doi.org/10.12989/scs.2016.21.4.883
  18. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S. and Beg, O.A. (2014), ''An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates'', Compos. Part B: Eng., 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  19. Belabed, Z., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate", Earthq. Struct., 14(2), 103-115. https://doi.org/10.12989/EAS.2018.14.2.103
  20. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  21. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2015), ''On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model'', Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  22. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017a), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., 25(3), 257-270. https://doi.org/10.12989/SCS.2017.25.3.257
  23. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017b), ''A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams'', Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  24. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), ''Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position'', J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  25. Benachour, A., Tahar, H.D., Atmane, H.A., Tounsi, A. and Ahmed, M.S. (2011), ''A four variable refined plate theory for free vibrations of functionally graded plates with arbitrary gradient'', Compos. Part B: Eng., 42(6), 1386-1394. https://doi.org/10.1016/j.compositesb.2011.05.032
  26. Benadouda, M., Ait Atmane, H., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2017), "An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities", Earthq. Struct., 13(3), 255-265. https://doi.org/10.12989/EAS.2017.13.3.255
  27. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), ''A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation'', Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
  28. Benbakhti, A., Bouiadjra, M.B., Retiel, N. and Tounsi, A. (2016), ''A new five unknown quasi-3D type HSDT for thermomechanical bending analysis of FGM sandwich plates'', Steel Compos. Struct., 22(5), 975-999. https://doi.org/10.12989/scs.2016.22.5.975
  29. Benchohra, M., Driz, H., Bakora, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2018), "A new quasi-3D sinusoidal shear deformation theory for functionally graded plates", Struct. Eng. Mech., 65(1), 19-31. https://doi.org/10.12989/SEM.2018.65.1.019
  30. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), ''Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory'', Compt. Rend. Mecaniq., 344(9), 631-641. https://doi.org/10.1016/j.crme.2016.03.002
  31. Bennai, R., Atmane, H.A. and Tounsi, A. (2015), ''A new higherorder shear and normal deformation theory for functionally graded sandwich beams'', Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521
  32. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  33. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  34. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. https://doi.org/10.12989/ANR.2018.6.2.147
  35. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  36. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), ''Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory'', Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493
  37. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), ''Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations'', Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  38. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2016), ''Thermal stability of functionally graded sandwich plates using a simple shear deformation theory'', Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  39. Bouhadra, A., Tounsi, A., Bousahla, A.A., Benyoucef, S. and Mahmoud, S. (2018), ''Improved HSDT accounting for effect of thickness stretching in advanced composite plates'', Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/SEM.2018.66.1.061
  40. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2016), ''An efficient shear deformation theory for wave propagation of functionally graded material plates'', Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837
  41. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), ''A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation'', Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  42. Bourada, F., Amara, K. and Tounsi, A. (2016), ''Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory'', Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  43. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), ''A new simple shear and normal deformations theory for functionally graded beams'', Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  44. Bourada, F., Amara, K., Bousahla, A.A.,Tounsi, A. and Mahmoud, S.R. (2018), "A novel refined plate theory for stability analysis of hybrid and symmetric S-FGM plates", Struct. Eng. Mech., 68(6), 661-675. https://doi.org/10.12989/sem.2018.68.6.661
  45. Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. https://doi.org/10.12989/was.2019.28.1.019
  46. Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A. and Adda Bedia, E.A. (2013), ''A new first shear deformation beam theory based on neutral surface position for functionally graded beams'', Steel Compos. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467
  47. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), ''On thermal stability of plates with functionally graded coefficient of thermal expansion'', Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313
  48. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), ''A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates'', Int. J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  49. Chakraverty, S. and Pradhan, K. (2014), ''Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions'', Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
  50. Cheng, Z.Q. and Batra, R. (2000), ''Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates'', J. Sound Vibr., 229(4), 879-895. https://doi.org/10.1006/jsvi.1999.2525
  51. Cherif, R.H., Meradjah, M., Zidour, M., Tounsi, A., Belmahi, H. and Bensattalah, T. (2018), "Vibration analysis of nano beam using differential transform method including thermal effect", J. Nano Res., 54, 1-14. https://doi.org/10.4028/www.scientific.net/JNanoR.54.1
  52. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  53. Draiche, K., Tounsi, A. and Mahmoud, S. (2016), ''A refined theory with stretching effect for the flexure analysis of laminated composite plates'', Geomech. Eng., 11(5), 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  54. El-Haina, F., Bakora, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), ''A simple analytical approach for thermal buckling of thick functionally graded sandwich plates'', Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  55. Fahsi, A., Tounsi, A., Hebali, H., Chikh, A., Adda Bedia, E.A. and Mahmoud, S.R. (2017), ''A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates'', Geomech. Eng., 13(3), 385-410. https://doi.org/10.12989/GAE.2017.13.3.385
  56. Fekrar, A., El Meiche, N., Bessaim, A., Tounsi, A. and Adda Bedia, E.A. (2012), ''Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory'', Steel Compos. Struct., 13(1), 91-107. https://doi.org/10.12989/scs.2012.13.1.091
  57. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), ''A novel four variable refined plate theory for wave propagation in functionally graded material plates'', Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/SCS.2018.27.1.109
  58. Golabchi, H., Kolahchi, R. and Bidgoli, M. (2018), ''Vibration and instability analysis of pipes reinforced by $SiO_{2}$ nanoparticles considering agglomeration effects'', Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/CAC.2018.21.4.431
  59. Hachemi, H., Kaci, A., Houari, M.S.A., Bourada, M., Tounsi, A. and Mahmoud, S. (2017), ''A new simple three-unknown shear deformation theory for bending analysis of FG plates resting on elastic foundations'', Steel Compos. Struct., 25(6), 717-726. https://doi.org/10.12989/SCS.2017.25.6.717
  60. Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018), ''Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory'', Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030
  61. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018), ''Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects'', Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004
  62. Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018), ''Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer'', Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002
  63. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), ''Dynamic buckling of sensor/functionally gradedcarbon nanotube-reinforced laminated plates/actuator based on sinusoidal-visco-piezoelasticity theories'', J. Sandw. Struct. Mater., 1099636217720373.
  64. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  65. Han, X., Liu, G., Lam, K. and Ohyoshi, T. (2000), ''A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization'', J. Sound Vibr., 236(2), 307-321. https://doi.org/10.1006/jsvi.2000.2966
  66. Han, X., Liu, G., Xi, Z. and Lam, K. (2001), ''Transient waves in a functionally graded cylinder'', Int. J. Sol. Struct., 38(17), 3021-3037. https://doi.org/10.1016/S0020-7683(00)00219-5
  67. Han, X., Liu, G., Xi, Z. and Lam, K. (2002), ''Characteristics of waves in a functionally graded cylinder'', Int. J. Numer. Meth. Eng., 53(3), 653-676. https://doi.org/10.1002/nme.305
  68. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Adda Bedia, E.A. (2014), ''New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates'', J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  69. Hosseini-Hashemi, S., Fadaee, M. and Taher, H.R.D. (2011), ''Exact solutions for free flexural vibration of levy-type rectangular thick plates via third-order shear deformation plate theory'', Appl. Math. Modell., 35(2), 708-727. https://doi.org/10.1016/j.apm.2010.07.028
  70. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S. (2016), ''A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates'', Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  71. Janghorban, M. (2016), ''Static analysis of functionally graded rectangular nanoplates based on nonlocal third order shear deformation theory'', Int. J. Eng. Appl. Sci., 8(2), 87-100.
  72. Kaci, A., Houari, M.S.A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), ''Post-buckling analysis of sheardeformable composite beams using a novel simple twounknown beam theory'', Struct. Eng. Mech., 65(5), 621-631. https://doi.org/10.12989/SEM.2018.65.5.621
  73. Kadari, B., Bessaim, A., Tounsi, A., Heireche, H., Bousahla, A.A. and Houari, M.S.A. (2018), "Buckling analysis of orthotropic nanoscale plates resting on elastic foundations", J. Nano Res., 55, 42-56. https://doi.org/10.4028/www.scientific.net/JNanoR.55.42
  74. Karami, B., Janghorban, M. and Tounsi, A. (2018a), ''Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264. https://doi.org/10.1016/j.tws.2018.02.025
  75. Karami, B., Janghorban, M. and Tounsi, A. (2018b), ''Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., 27(2), 201-216. https://doi.org/10.12989/SCS.2018.27.2.201
  76. Karami, B., Janghorban, M. and Tounsi, A. (2019), ''Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. Comput., In Press.
  77. Kerr, A.D. (1964), ''Elastic and viscoelastic foundation models'', J. Appl. Mech., 31(3), 491-498. https://doi.org/10.1115/1.3629667
  78. Kettaf, F.Z., Houari, M.S.A., Benguediab, M. and Tounsi, A. (2013), ''Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model'', Steel Compos. Struct., 15(4), 399-423. https://doi.org/10.12989/scs.2013.15.4.399
  79. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2017), ''A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates'', Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  80. Klouche, F., Darcherif, L., Sekkal, M., Tounsi, A. and Mahmoud, S.R. (2017), ''An original single variable shear deformation theory for buckling analysis of thick isotropic plates'', Struct. Eng. Mech., 63(4), 439-446. https://doi.org/10.12989/SEM.2017.63.4.439
  81. Kolahchi, R. (2017), ''A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods'', Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016
  82. Kolahchi, R. and Cheraghbak, A. (2017), ''Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method'', Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x
  83. Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016), ''Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories'', Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032
  84. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017), ''Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm'', J. Sandw. Struct. Mater., 1099636217731071.
  85. Kolahchi, R. and Moniri Bidgoli, A.M. (2016), ''Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes'', Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8
  86. Kolahchi, R., Safari, M. and Esmailpour, M. (2016), ''Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium'', Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023
  87. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), ''Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods'', Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016
  88. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), ''Wave propagation of embedded viscoelastic FG-CNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory'', Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
  89. Laoufi, I., Ameur, M., Zidi, M., Adda Bedia, E.A. and Bousahla, A.A. (2016), ''Mechanical and hygrothermal behaviour of functionally graded plates using a hyperbolic shear deformation theory'', Steel Compos. Struct., 20(4), 889-911. https://doi.org/10.12989/scs.2016.20.4.889
  90. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  91. Madani, H., Hosseini, H. and Shokravi, M. (2016), ''Differential cubature method for vibration analysis of embedded FG-CNTreinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions'', Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889
  92. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  93. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., In Press.
  94. Mantari, J., Oktem, A. and Soares, C.G. (2012), ''A new higher order shear deformation theory for sandwich and composite laminated plates'', Compos. Part B: Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
  95. Matsunaga, H. (2008), ''Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory'', Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  96. Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., In Press.
  97. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2017), ''A new and simple HSDT for thermal stability analysis of FG sandwich plates'', Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  98. Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2018), ''A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory'', Smart Struct. Syst., 21(4), 397-405. https://doi.org/10.12989/SSS.2018.21.4.397
  99. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  100. Nedri, K., El Meiche, N. and Tounsi, A. (2014), ''Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory'', Mech. Compos. Mater., 49(6), 629-640. https://doi.org/10.1007/s11029-013-9379-6
  101. Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, R. and Soares, C. (2012), ''A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates'', Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005
  102. Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C., Jorge, R. and Soares, C.M. (2013), ''Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique'', Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
  103. Neves, A., Ferreira, A., Carrera, E., Roque, C., Cinefra, M., Jorge, R. and Soares, C. (2012), ''A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates'', Compos. Part B: Eng., 43(2), 711-725. https://doi.org/10.1016/j.compositesb.2011.08.009
  104. Pasternak, P. (1954), On a New Method of an Elastic Foundation by Means of Two Foundation Constants, Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstuve i Arkhitekture.
  105. Reddy, J. (2000), ''Analysis of functionally graded plates'', Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
  106. Reddy, J.N. (2002), Energy Principles and Variational Methods in Applied Mechanics, John Wiley & Sons.
  107. Reissner, E. (1945), ''The effect of transverse shear deformation on the bending of elastic plates'', J. Appl. Mech., A69-A77.
  108. Safari Bilouei, B., Kolahchi, R. and Bidgoli, M. (2016), ''Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)'', Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053
  109. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017a), ''A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate'', Steel Compos. Struct., 25(4), 389-401. https://doi.org/10.12989/SCS.2017.25.4.389
  110. Sekkal, M., Fahsi, B., Tounsi, A. and Mahmoud, S.R. (2017b), ''A new quasi-3D HSDT for buckling and vibration of FG plate'', Struct. Eng. Mech., 64(6), 737-749. https://doi.org/10.12989/SEM.2017.64.6.737
  111. Selmi, A. and Bisharat, A. (2018), ''Free vibration of functionally graded SWNT reinforced aluminum alloy beam'', J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445
  112. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), ''A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation'', Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
  113. Sharma, N., Mahapatra, T.R. and Panda, S.K. (2017), ''Vibroacoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory'', Compos. Struct., 180, 116-129. https://doi.org/10.1016/j.compstruct.2017.08.012
  114. Shokravi, M. (2017), ''Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM'', Geomech. Eng., 12(2), 327-346. https://doi.org/10.12989/gae.2017.12.2.327
  115. Shokravi, M. (2017), ''Buckling of sandwich plates with FG-CNTreinforced layers resting on orthotropic elastic medium using Reddy plate theory'', Steel Compos. Struct., 23(6), 623-631. https://doi.org/10.12989/SCS.2017.23.6.623
  116. Shokravi, M. (2017), ''Dynamic pull-in and pull-out analysis of viscoelastic nanoplates under electrostatic and casimir forces via sinusoidal shear deformation theory'', Microelectron. Reliab., 71, 17-28. https://doi.org/10.1016/j.microrel.2017.02.006
  117. Shokravi, M. (2017), ''Vibration analysis of silica nanoparticlesreinforced concrete beams considering agglomeration effects'', Comput. Concrete, 19(3), 333-338. https://doi.org/10.12989/cac.2017.19.3.333
  118. Shufrin, I. and Eisenberger, M. (2005), ''Stability and vibration of shear deformable plates-first order and higher order analyses'', Int. J. Sol. Struct., 42(3-4), 1225-1251. https://doi.org/10.1016/j.ijsolstr.2004.06.067
  119. Sobhy, M. (2013), ''Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions'', Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018
  120. Tounsi, A., Houari, M.S.A. and Benyoucef, S. (2013), ''A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates'', Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  121. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), ''A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate'', Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
  122. Vel, S.S. and Batra, R. (2004), ''Three-dimensional exact solution for the vibration of functionally graded rectangular plates'', J. Sound Vibr., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7
  123. Woo, J., Meguid, S. and Ong, L. (2006), ''Nonlinear free vibration behavior of functionally graded plates'', J. Sound Vibr., 289(3), 595-611. https://doi.org/10.1016/j.jsv.2005.02.031
  124. Yaghoobi, H. and Yaghoobi, P. (2013), ''Buckling analysis of sandwich plates with FGM face sheets resting on elastic foundation with various boundary conditions: an analytical approach'', Meccan., 48(8), 2019-2035. https://doi.org/10.1007/s11012-013-9720-0
  125. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), ''Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories'', Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  126. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/SSS.2018.21.1.015
  127. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/SSS.2018.21.1.065
  128. Younsi, A., Tounsi, A., Zaoui, F.Z., Bousahla, A.A. and Mahmoud, S. (2018), ''Novel quasi-3D and 2D shear deformation theories for bending and free vibration analysis of FGM plates'', Geomech. Eng., 14(6), 519-532. https://doi.org/10.12989/GAE.2018.14.6.519
  129. Yousfi, M., Atmane, H.A., Meradjah, M., Tounsi, A. and Bennai, R. (2018), ''Free vibration of FGM plates with porosity by a shear deformation theory with four variables'', Struct. Eng. Mech., 66(3), 353-368. https://doi.org/10.12989/SEM.2018.66.3.353
  130. Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), ''Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_{2}$ nano-particles'', Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043
  131. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B, 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051
  132. Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), ''Seismic response of underwater fluid-conveying concrete pipes reinforced with $SiO_{2}$ nanoparticles and fiber reinforced polymer (FRP) layer'', Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009
  133. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), ''A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory'', Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  134. Zenkour, A.M. (2006), ''Generalized shear deformation theory for bending analysis of functionally graded plates'', Appl. Mah. Modell., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009
  135. Zhao, X., Lee, Y. and Liew, K.M. (2009), ''Free vibration analysis of functionally graded plates using the element-free kp-Ritz method'', J. Sound Vibr., 319(3-5), 918-939. https://doi.org/10.1016/j.jsv.2008.06.025
  136. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), ''Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory'', Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
  137. Zidi, M., Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2017), ''A novel simple two-unknown hyperbolic shear deformation theory for functionally graded beams'', Struct. Eng. Mech., 64(2), 145-153. https://doi.org/10.12989/sem.2017.64.2.145
  138. Zine, A., Tounsi, A., Draiche, K., Sekkal, M. and Mahmoud, S.R. (2018), ''A novel higher-order shear deformation theory for bending and free vibration analysis of isotropic and multilayered plates and shells'', Steel Compos. Struct., 26(2), 125-137. https://doi.org/10.12989/SCS.2018.26.2.125

피인용 문헌

  1. Wave dispersion properties in imperfect sigmoid plates using various HSDTs vol.33, pp.5, 2019, https://doi.org/10.12989/scs.2019.33.5.699
  2. Free Vibration and Static Bending Analysis of Piezoelectric Functionally Graded Material Plates Resting on One Area of Two-Parameter Elastic Foundation vol.2020, 2019, https://doi.org/10.1155/2020/9236538
  3. New Finite Modeling of Free and Forced Vibration Responses of Piezoelectric FG Plates Resting on Elastic Foundations in Thermal Environments vol.2021, 2019, https://doi.org/10.1155/2021/6672370
  4. Vibration analysis of porous FGM plate resting on elastic foundations: Effect of the distribution shape of porosity vol.10, pp.1, 2019, https://doi.org/10.12989/csm.2021.10.1.061
  5. Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory vol.39, pp.1, 2019, https://doi.org/10.12989/scs.2021.39.1.095