DOI QR코드

DOI QR Code

Loran-C Multiple Chain Positioning using ToA Measurements

ToA 측정치를 이용하는 Loran-C 다중 체인 측위 방법

  • Kim, Youngki (Korea Research Institute of Ships & Ocearn Engineering) ;
  • Fang, Tae Hyun (Korea Research Institute of Ships & Ocearn Engineering) ;
  • Kim, Don (Korea Research Institute of Ships & Ocearn Engineering) ;
  • Seo, Kiyeol (Korea Research Institute of Ships & Ocearn Engineering) ;
  • Park, Sang Hyun (Korea Research Institute of Ships & Ocearn Engineering)
  • 김영기 (한국해양과학기술원 부설 선박해양플랜트연구소 해양환경안전연구본부) ;
  • 황태현 (한국해양과학기술원 부설 선박해양플랜트연구소 해양환경안전연구본부) ;
  • 김동현 (한국해양과학기술원 부설 선박해양플랜트연구소 해양환경안전연구본부) ;
  • 서기열 (한국해양과학기술원 부설 선박해양플랜트연구소 해양환경안전연구본부) ;
  • 박상현 (한국해양과학기술원 부설 선박해양플랜트연구소 해양환경안전연구본부)
  • Received : 2018.11.19
  • Accepted : 2019.01.07
  • Published : 2019.02.28

Abstract

In this paper, we proposed a multi-chain Time of Arrival (ToA) positioning method to estimate positions using all received Loran-C signals from multiple chains without constraining to a single chain. Conventionally, we have to choose only one chain among several available chains for position estimation using Loran-C. Therefore, the number of signals to be used for positioning is limited to three to five. In general, if more signals are used for positioning estimation, its performance tends to be improved in terms of accuracy and availability. To validate the proposed method for multi-chain Loran-C, we firstly carried out a static positioning test in land. By analyzing the test results, we confirmed that the proposed method works well under a multi-chain Loran-C scenario. Subsequently, another mobile positioning test was conducted on board a vessel under a practical application scenario. From this second test, we successfully demonstrated that the multi-chain ToA positioning method even in situations where the conventional single-chain Loran-C approach fails for positioning.

본 논문에서는 체인을 선택하지 않고 수신된 모든 Loran-C 신호를 이용하여 위치를 측정하는 방법을 제안하였다. Loran-C 수신기는 여러 체인 중 하나만을 선택하여 해당 체인에 속한 송신국 신호만을 위치 측정에 사용한다. 이에 따라 수신기가 위치를 계산하기 위해 사용하는 신호의 수는 일반적으로 3~5개로 제한된다. 만약 더 많은 신호를 사용하여 위치를 측정할 수 있다면 수신기의 측위 성능은 정확도와 가용성 측면에서 향상될 것이다. 다음으로 제안하는 방법의 유효성 여부를 확인하기 위해 실측 시험을 수행하였다. 육상 정지측위 시험 결과를 분석함으로써 제안하는 방법으로 위치 측정이 가능함을 확인하였다. 또한, 해상 이동측위 시험 결과는 일반적인 Loran-C 수신기가 위치를 측정할 수 없는 상황에서 다중 체인 ToA 측위 방법으로 위치를 측정한 하나의 예시를 보여준다.

Keywords

GHMHD9_2019_v43n1_23_f0001.png 이미지

Fig. 1 Changes in raw ToA measurement with increasing receiver clock offset

GHMHD9_2019_v43n1_23_f0002.png 이미지

Fig. 2 eLoran Antenna(H) used in the static experiment

GHMHD9_2019_v43n1_23_f0003.png 이미지

Fig. 3 Result of static positioning (Used Signals: 7430M, X, Y, 8390M, Y, 9930M, W)

GHMHD9_2019_v43n1_23_f0004.png 이미지

Fig. 4 Result of static positioning(Used Signals:7430M,X,Y)

GHMHD9_2019_v43n1_23_f0005.png 이미지

Fig. 5 Portable antenna park (eLoran and GNSS Antenna)

GHMHD9_2019_v43n1_23_f0006.png 이미지

Fig. 6 Experimental vehicles on board the vessel

GHMHD9_2019_v43n1_23_f0007.png 이미지

Fig. 7 Trajectory of the position measured using the proposed method

GHMHD9_2019_v43n1_23_f0008.png 이미지

Fig. 8 Result of mobile positioning – Horizontal position error

GHMHD9_2019_v43n1_23_f0009.png 이미지

Fig. 9 Result of mobile positioning – East error and north error

Table 1 Loran signals used in each case

GHMHD9_2019_v43n1_23_t0001.png 이미지

Table 2 Positioning result for each combination

GHMHD9_2019_v43n1_23_t0002.png 이미지

References

  1. Dickinson, W. T. (1959), Engineering Evaluation of the Loran-C Navigation System, Jansky & Bailey Inc.
  2. GLAs(2006), The Case for eLORAN, Research and Radionavigation General Lighthouse Authorities of the United Kingdom and Ireland.
  3. GLAs(2012), Radio Navigation Plan, General Lighthouse Authorities of the United Kingdom and Ireland.
  4. Goo, J. H. et al. (2007), "LORAN-C using and Position error improvement against being unable to use the Global Positioning System(GPS)", The Journal of Korea Navigation Institute, Vol. 11, No. 1, pp. 1-8.
  5. Groves, P. D. (2013), Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems (Boston: Artech House), pp. 484-487.
  6. ILA(2007), Enhanced Loran (eLoran) Definition Document, International Loran Association.
  7. Jorgensen, T. H. and Hernes, G. M. (2000), "Loran-C integrated with satellite systems NELS status report", Proceedings of the IAIN World Congress In association with the U.S. ION Annual Meeting, pp. 339-343.
  8. Kaplan, E. D. and Hegarty, C. J. (2005), Understanding GPS, Principles and Applications (Norwood:Artech House), pp. 54-58.
  9. Offermans, G. et al. (2015), "eLoran Initial Operational Capability in the United Kingdom - First Results", Proceedings of the 2015 International Technical Meeting (ION ITM 2015), pp. 27-39.
  10. Offermans, G., Bartlett, S. and Schue, C. (2017), "Providing a Resilient Timing and UTC Service Using eLoran in the United States", Journal of The Institute of Navigation, Vol. 64, No. 3, pp. 339-349. https://doi.org/10.1002/navi.197
  11. Peterson, B., Dykstra, K., Carroll, K. and Narins, M. (2003), "Technology to Evaluate eLoran Performance", Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), pp. 1327-1344.
  12. Roth, G. L. et al. (2005), "Enhanced or eLoran for Time and Frequency Applications", Proceedings of the 37th Annual Precise Time and Time Interval Systems and Applications Meeting, pp. 816-823.
  13. RTCM(2016), Minimum Performance Standards for Marine eLoran Receiving Equipment, Radio Technical Commission for Maritime Services, RTCM Paper 125-2016-SC127-112.
  14. USCG(1992), Loran-C User Handbook, Department of Transportation Publication, COMMANDANT PUBLIC ATION P16562.5.
  15. Vincenty, T. (1975), "Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested Equations", Survey Review, Vol. 23, No. 176, pp. 88-93. https://doi.org/10.1179/sre.1975.23.176.88
  16. Yang, S. H. et al. (2010), "Inland ASF Measurement by Signal of the 9930M Station", Journal of Navigation and Port Research, Vol. 34, No. 8, pp. 603-607. https://doi.org/10.5394/KINPR.2010.34.8.603