DOI QR코드

DOI QR Code

Synthesis of Yttria Stabilized Zirconia Powder with Rare Earth Using Oxalate Method

옥살산법을 이용하여 희토류를 첨가한 안정화 지르코니아 분말 합성

  • Nam, Jeong Sic (Optic & Electrnic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Ji-Sun (Optic & Electrnic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Young-Jin (Optic & Electrnic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jeon, Dae-Woo (Optic & Electrnic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sun-Woog (Optic & Electrnic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ra, Yong-Ho (Optic & Electrnic Components Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Sae-Hoon (Department of Ceramic Engineering, Gangneung Wonju National University) ;
  • Kim, Jin-Ho (Optic & Electrnic Components Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 남정식 (한국세라믹기술원 광.전자부품소재센터) ;
  • 이지선 (한국세라믹기술원 광.전자부품소재센터) ;
  • 이영진 (한국세라믹기술원 광.전자부품소재센터) ;
  • 전대우 (한국세라믹기술원 광.전자부품소재센터) ;
  • 김선욱 (한국세라믹기술원 광.전자부품소재센터) ;
  • 라용호 (한국세라믹기술원 광.전자부품소재센터) ;
  • 김세훈 (강릉원주대학교 세라믹공학과) ;
  • 김진호 (한국세라믹기술원 광.전자부품소재센터)
  • Received : 2018.12.18
  • Accepted : 2019.01.31
  • Published : 2019.03.01

Abstract

The traditional yttria-stabilized zirconia (YSZ) used in thermal barrier coatings has a limited operating temperature owing to densification and volume changes at high temperatures. A $(La_{1-x}Y_x)_2Zr_2O_7$ sintered compound was prepared by the co-precipitation and oxalate methods, by adding lanthanum zirconate to yttria. The thermal properties and crystallinity obtained by the two different methods were compared. Both methods yielded pyrochlore structures, and the oxalate method confirmed phases at low temperatures. The thermal conductivity of the sintered bulk prepared by co-precipitation was 0.93 W/mK, while that prepared by the oxalate method was 0.85 W/mK. These values are superior to that of 4YSZ at $1,000^{\circ}C$, which is widely used in industries.

Keywords

JJJRCC_2019_v32n2_174_f0001.png 이미지

Fig. 1. Schematic diagram of co-precipition and oxalate method.

JJJRCC_2019_v32n2_174_f0002.png 이미지

Fig. 2. XRD patterns of sintering (La1-xYx)2Zr2O7 at 1,500℃ for 2 h (a) co-precipitation method and (b) oxalate method.

JJJRCC_2019_v32n2_174_f0003.png 이미지

Fig. 3. XRD patterns of calcination (La1-xYx)2Zr2O7 at 800℃ for 2 h (a) co-precipitation method and (b) oxalate method.

JJJRCC_2019_v32n2_174_f0004.png 이미지

Fig. 4. TG-DTA traces of (La1-xYx)2Zr2O7 gel prepared by (a) co-precipitation method and (b) oxalate method.

JJJRCC_2019_v32n2_174_f0005.png 이미지

Fig. 5. Temperature dependence of thermal conductivity of (La1-xYx)2Zr2O7 obtained by the co-precipitation method and oxalate method.

References

  1. M. P. Albano, L. A. Genova, L. B. Garrido, and K. Plucknett, Ceram. Int., 34, 1983 (2008). [DOI: https://doi.org/10.1016/j.ceramint.2007.07.028]
  2. I. K. Jun, Y. H. Koh, J. H. Song, S. H. Lee, and H. E. Kim, Mater. Lett., 60, 2507 (2006). [DOI: https://doi.org/10.1016/j.matlet.2006.01.031]
  3. A. K. Gain and B. T. Lee, Mater. Sci. Eng., A, 419, 269 (2006). [DOI: https://doi.org/10.1016/j.msea.2005.12.033]
  4. A. K. Gain, H. Y. Song, and B. T. Lee, Scripta Mater., 54, 2081 (2006). [DOI: https://doi.org/10.1016/j.scriptamat.2006.03.009]
  5. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D. S. Smith, J. Eur. Ceram. Soc., 26, 3567 (2006). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.11.011]
  6. G. G. Levi, Curr. Opin. Solid State Mater. Sci., 8, 77 (2012). [DOI: https://doi.org/10.1016/j.cossms.2004.03.009]
  7. D. R. Clarke and C. G. Levi, Annu. Rev. Mater. Sci., 33, 383 (2003). [DOI: https://doi.org/10.1146/annurev.matsci.33.011403.113718]
  8. A. G. Evans, D. R. Clarke, and C. G. Levi, J. Eur. Ceram. Soc., 28, 1405 (2008). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.12.023]
  9. D. R. Clarke, M. Oechsner, and N. P. Padture, MRS Bull., 37, 891 (2012). [DOI: https://doi.org/10.1557/mrs.2012.232]
  10. W. Pan, S. R. Phillpot, C. Wan, A. Chematynkiy, and Z. Qu, MRS Bull., 37, 917 (2012). [DOI: https://doi.org/10.1557/mrs.2012.234]
  11. X. Q. Cao, R. Vassen, and D. Stoever, J. Eur. Ceram. Soc., 24, 1 (2004). [DOI: https://doi.org/10.1016/S0955-2219(03)00129-8]
  12. S. W. Kim, S. M. Lee, Y. S. Oh, H. T. Kim, and B. K. Jang, J. Korean Powder Metall. Inst., 18, 568 (2011). [DOI: https://doi.org/10.4150/KPMI.2011.18.6.568]
  13. M. N. Rahaman, J. R. Gross, R. E. Dutton, and H. Wang, Acta Mater., 54, 1615 (2006). [DOI: https://doi.org/10.1016/j.actamat.2005.11.033]
  14. J. V. Herle, T. Horita, T. Kawada, N. Sakai, H. Yokokawa, and M Dokiya, Ceram. Int., 24, 229 (1998). [DOI: https://doi.org/10.1016/S0272-8842(97)00007-2]
  15. T. S. Zhang, J. Ma, L. B. Kong, P. Hing, Y. J. Leng, S. H. Chan, and J. A. Kilner, J. Power Sources, 124, 26 (2003). [DOI: https://doi.org/10.1016/S0378-7753(03)00625-6]
  16. R. S. Torrens, N. M. Sammes, and G. A. Tomsett, Solid State Ionics, 111, 9 (1998). [DOI: https://doi.org/10.1016/S0167-2738(98)00172-6]
  17. Z. G. Liu, J. H. Ouyang, and Y. Zhou, J. Alloys Compd., 473, L17 (2009). [DOI: https://doi.org/10.1016/j.jallcom.2008.05.053]
  18. H. Chen, Y. Gao, Y. Liu, and H. Luo, J. Alloys Compd., 480, 843 (2008). [DOI: https://doi.org/10.1016/j.jallcom.2009.02.081]