DOI QR코드

DOI QR Code

A Study on the Improved the Hydrophobicity of Torrefied Biomass

반탄화 과정을 통한 바이오매스의 소수성 개선 연구

  • JEONG, JAE-SEONG (School of Mechanical Engineering, Pusan National University) ;
  • KIM, GYEONG-MIN (School of Mechanical Engineering, Pusan National University) ;
  • JEONG, HYUN-JUN (Boryeong Power Station Headquarters, Korea Middle Power Co.) ;
  • KIM, GYU-BO (Pusan Clean Coal Center, Pusan National University) ;
  • JEON, CHUNG-HWAN (School of Mechanical Engineering, Pusan National University)
  • 정재성 (부산대학교 기계공학부) ;
  • 김경민 (부산대학교 기계공학부) ;
  • 정현준 (한국중부발전 보령발전본부) ;
  • 김규보 (부산대학교 화력발전에너지분석기술센터) ;
  • 전충환 (부산대학교 기계공학부)
  • Received : 2018.12.17
  • Accepted : 2019.02.28
  • Published : 2019.02.28

Abstract

Biomass, a carbon-neutral fuel, has great advantages because it can replace fossil fuels to reduce greenhouse gas emissions. However, due to its low density, high water content, and hydrophilicity, biomass has disadvantages for transportation and storage. To improve these properties, a pretreatment process of biomass is required. One of the various pre-treatment technologies, torrefacion, makes biomass similar to coal through low-temperature pyrolysis. In this study, torrefacion treatment was carried out at 200, 230, 250, 280, and $300^{\circ}C$ for wood pellet, empty fruit bunch (EFB) and kenaf, and the feasibility of replacing coal with fuel was examined. Hygroscopicity tests were conducted to analyze the hydrophobicity of biomass, and its chemical structure changes were investigated using Infrared spectrum analysis. It was confirmed that the hygroscopicity was decreased gradually as the torrefacion temperature increased according to the hygroscopicity tests. The hydrophilicity was reduced according to the pyrolysis of hemicellulose, cellulose, and lignin of biomass.

Keywords

SSONB2_2019_v30n1_49_f0001.png 이미지

Fig. 1. Correlation between energy yield & mass yield of torre-fied biomass

SSONB2_2019_v30n1_49_f0004.png 이미지

Fig. 4. -OH quantity of biomass from 3,400-3200 cm-1

SSONB2_2019_v30n1_49_f0005.png 이미지

Fig. 5. C-O-(H) quantity of biomass from 1,040-1,110 cm-1

SSONB2_2019_v30n1_49_f0006.png 이미지

Fig. 2. Moisture absorption ratio of raw and torrefied (a) wood pellet, (b) EFB, (c) Kenaf

SSONB2_2019_v30n1_49_f0007.png 이미지

Fig. 3. FT-IR spectra of raw and torrefied (a) wood pellet, (b) EFB, (c) Kenaf

SSONB2_2019_v30n1_49_f0008.png 이미지

Table 4. The main functional groups of the hemicellulose, cellulose, and lignin

Table 1. Proximate and calorific value analysis of the samples

SSONB2_2019_v30n1_49_t0001.png 이미지

Table 2. Ultimate analysis of the samples

SSONB2_2019_v30n1_49_t0002.png 이미지

Table 3. Equations for HHV

SSONB2_2019_v30n1_49_t0003.png 이미지

References

  1. J. H. Kim, K. H. Park, G. M. Kim, K. W. Park, T. Y. Jeong, Y. J. Lee, and C. H. Jeon, "The Biomass Pre-treatment Effect on the Combustion Characteristics of Coal and Biomass Blends", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 1, 2018, pp. 81-89, doi: https://doi.org/10.7316/KHNES.2018.29.1.81.
  2. I. J. Yoon, "Issues and Prospects of the Paris Agreement", Han Yang Law Review, Vol. 28, No. 2, 2017, pp. 113-144.
  3. Department of Renewable Energy, "Renewable Energy 3020 Implementation Plan Announced", Ministry of Trade, Industry and Energy, 2017. Retrieved from http://www.motie.go.kr/motiee/presse/press2/bbs/ bbsView.do?bbs_seq_n=159996&bbs_cd_n=81.
  4. J. W. Jeong, G. M. Kim, Y. Y. Isworo, and C. H. Jeon, "The Effect of Torrefaction Process on the Structure and Combustion of Biomass Fuel", Trans. of the Korean Hydrogen and New Energy Society, Vol. 29, No. 3, 2018, pp. 280-291, doi: https://doi.org/10.7316/KHNES.2018.29.3.280.
  5. M. J. C. van der Stelt, H. Gerhauser, J. H. A. Kiel, K. J. Ptasinski, "Biomass upgrading by torrefaction for the production of biofuels: A review", Biomass and Bioenergy, Vol. 35, No. 9, 2011, pp. 3748-3762, doi: https://doi.org/10.1016/j.biombioe.2011.06.023.
  6. R. H. H. Ibrahim, L. I. Darvell, J. M. Jones, and A. Williams, "Physicochemical characterisation of torrefied biomass", Journal of Analytical and Applied Pyrolysis, Vol. 103, 2013, pp. 21-30, doi: https://doi.org/10.1016/j.jaap.2012.10.004.
  7. W. H. Chen, J. Peng, and X. T. Bi, "A state-of-the-art review of biomass torrefaction, densification and applications", Renew. Sust. Energ. Rev., Vol. 44, 2015, pp. 847-866, doi: https://doi.org/10.1016/j.rser.2014.12.039.
  8. W. Yan, J. T. Hastings, T. C. Acharjee, C. J. Coronella, and V. R. Vasquez, "Mass and energy balances of wet torrefaction of lignocellulosic biomass", Energy Fuels, Vol. 24, No. 9, 2010, pp. 4738-4742, doi: http://dx.doi.org/10.1021/ef901273n.
  9. A. Ohliger, M. Forster, and R. Kneer, "Torrefaction of beechwood: A parametric study including heat of reaction and grindability", Fuel, Vol. 104, 2013, pp. 607-613, doi: https://doi.org/10.1016/j.fuel.2012.06.112.
  10. M. Manouchehrinejad, I. van Giesen, and S. Mani, "Grindability of torrefied wood chips and wood pellets", Fuel Processing Technology, Vol. 182, 2018, pp. 45-55, doi: https://doi.org/10.1016/j.fuproc.2018.10.015.
  11. ASTM D5373-16, "Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke", ASTM International, USA, 2016.
  12. ASTM D5373-16, "Standard Test Method for Gross Calorific Value of Coal and Coke", ASTM International, USA, 2013.
  13. P. Rousset, C. Aguiar, N. Labbe, and J. M. Commandre, "Enhancing the combustible properties of bamboo by torre faction", Bioresource Technology, Vol. 102, No. 17, 2011, pp. 8225-8231, doi: https://doi.org/10.1016/j.biortech.2011.05.093.
  14. W. H. Chen and P. C. Kuo, "Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass", Energy, Vol. 36, No. 2, 2011, pp. 803-811, doi: https://doi.org/10.1016/j.energy.2010.12.036.
  15. H. Zhou, Y. Q. Long, A. H. Meng, Q. H. Li, and Y. G. Zhang, "The pyrolysis simulation of five biomass species by hemi-cellulose, cellulose and lignin based on thermogravimetric curves", Thermochimica Acta, Vol. 566, 2013, pp. 36-43, doi: https://doi.org/10.1016/j.tca.2013.04.040.
  16. K. L. Chin, P. S. H'ng, W. Z. Go, W. Z. Wong, T. W. Lim, M. Maminski, M. T. Paridah, and A.C. Luqman, "Optimation of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia", Industrial Crops and Products, Vol. 49, 2013, pp. 768-774, doi: https://doi.org/10.1016/j.indcrop.2013.06.007.
  17. J. J. Chew and V. Doshi, "Recent advances in biomass pretreatment-torrefaction fundamentals and technology", Renewable and Sustainable Energy Reviews, Vol. 15, No. 8, 2011, pp. 4212-4222, doi: https://doi.org/10.1016/j.rser.2011.09.017.
  18. J. Lee, E. J. Kim, S. M. Lee, Y. M. Ju, and B. J. Ahn, "Upgrading of the Hydrophobicity of Larixkaempferi and Liriodendron tulipifera via Torrefaction", New & Renewable Energy, Vol. 12, No. 4, 2016, pp. 70-76, doi: http://dx.doi.org/10.7849/ksnre.2016.12.12.4.070.
  19. H. Tan, "Mechanism study of biomass pyrolysis", PhD thesis, EngThermophys, Zhejiang University, China, 2005.
  20. H. P. Yang, R. Yan, H. Chen, D. H. Lee, D. T. Liang , and C. Zheng, "Mechanism of palm oil wastes pyrolysis in a packed bed", Energy Fuel, Vol. 20, No. 3, 2006, pp. 1321-1328, doi: http://dx.doi.org/10.1021/ef0600311.
  21. K. Bilba and A. Ouensanga, "Fourier transform infrared spectroscopic study of thermal degradation of sugar cane bagasse", J. Anal. Appl. Pyrolysis, Vol. 38, No. 1-2, 1996, pp. 61-73, doi: https://doi.org/10.1016/S0165-2370(96)00952-7.
  22. A. Zheng, Z. Zhao, S. Chang, Z. Huang, F. He, and H. Li, "Effect of Torrefaction Temperature on Product Distribution from Two-Staged Pyrolysis of Biomass", Energy Fuels, Vol. 26, No. 5, 2012, pp. 2968-2974, doi: http://dx.doi.org/10.1021/ef201872y.
  23. I. J. Lee and W. H. Lee, "Analysis of Structure and Physical and Chemical Properties of the Carbonized Pine Wood (Pinus densiflora Sieb. et Zucc.) Materials -Pyrolytic Behavior of Pine Wood Dust-", Journal of the Korean Wood Science and Technology, Vol. 42, No. 3, 2014, pp. 266-274, doi: https://doi.org/10.5658/WOOD.2014.42.3.266.
  24. J. Park, J. Meng, K. H. Lim, O. J. Rojas, and S. Park, "Trans formation of lignocellulosic biomass during torrefaction", Journal of Analytical and Applied Pyrolysis, Vol. 100, 2013, pp. 199-206, doi: https://doi.org/10.1016/j.jaap.2012.12.024.
  25. P. Bajpai, "Chapt.2 Structure of Lignocellulosic Biomass of Pretreatment of Lignocellulosic Biomass for Biofuel Production", SpringerBriefs in Green Chemistry for Sustainability, Netherlands, 2016, pp. 7-10.
  26. J. Parikh, S. A. Channiwala, and G. K. Ghosal, "A correlation for calculating HHV from proximate analysis of solid fuels", Fuel, Vol. 84, No. 5, 2005, pp. 487-494, doi: https://doi.org/10.1016/j.fuel.2004.10.010.
  27. C. Y. Yin, "Prediction of higher heating values of biomass from proximate and ultimate analyses", Fuel, Vol. 90, No. 3, 2011, pp. 1128-1132, doi: https://doi.org/10.1016/j.fuel.2010.11.031.