DOI QR코드

DOI QR Code

Buckling Behaviors of Tapered Piles

테이퍼 말뚝의 좌굴 거동

  • Received : 2018.12.11
  • Accepted : 2019.02.21
  • Published : 2019.02.28

Abstract

In this study, an analytical model is proposed to estimate the buckling responses of tapered piles. The governing differential equation of the soil-pile system considering the tapering and side friction of the pile and the soil nonhomogeneity is derived, which is numerically integrated by the Runge-Kutta method and then the eigenvalue of bucking load is determined by Regula-Falsi algorithm. For a cylindrical pile, the results obtained from this study are found to compare well with those reported in literature. Illustrative examples for buckling load and stress as well as buckled shape are provided to investigate the effects of dimensionless parameters related to the soil-pile system.

본 논문에서는 테이퍼 말뚝의 좌굴 거동을 평가할 수 있는 해석모델을 제안하였다. 말뚝의 변단면과 주면마찰, 지반의 비균질성을 고려하는 지반-말뚝 시스템의 좌굴을 지배하는 미분방정식을 유도하였다. 이 지배방정식을 Runge-Kutta 법을 이용하여 직접 수치 적분하였고, 미분방정식의 고유치인 좌굴하중은 Regula-Falsi 법을 이용하여 산정하였다. 원통형 말뚝에 대한 문헌값과 이 연구의 좌굴하중을 비교하여 연구의 타당성을 검증하였고, 지반-말뚝에 관련된 무차원변수가 좌굴하중, 좌굴모드, 좌굴응력에 미치는 영향을 분석하였다.

Keywords

GJBGC4_2019_v35n2_19_f0002.png 이미지

Fig. 3. Comparison of obtained and existing solution for cylindrical piles with different boundary conditions: (a) free-free, (b) free-pinned, and (c) free-fixed

GJBGC4_2019_v35n2_19_f0003.png 이미지

Fig. 4. Variation of b with ar

GJBGC4_2019_v35n2_19_f0004.png 이미지

Fig. 5. Variation of b with ak

GJBGC4_2019_v35n2_19_f0005.png 이미지

Fig. 6. Variation of b with af

GJBGC4_2019_v35n2_19_f0006.png 이미지

Fig. 7. Variations of b with (a) γ and (b) α

GJBGC4_2019_v35n2_19_f0007.png 이미지

Fig. 8. Variation of b with β

GJBGC4_2019_v35n2_19_f0008.png 이미지

Fig. 9. Buckling modes of tapered friction piles: (a) free-free, (b) free-pinned, and (c) free-fixed

GJBGC4_2019_v35n2_19_f0009.png 이미지

Fig. 10. ζb profiles along ξ : (a) free-free, (b) free-pinned, and (c) free-fixed

GJBGC4_2019_v35n2_19_f0010.png 이미지

Fig. 1. Notations for soil-pile system: variations of (a) pile radius, (b) coefficient of subgrade reaction, and (c) unit side-friction resistance

GJBGC4_2019_v35n2_19_f0011.png 이미지

Fig. 2. (a) Idealization of a bucked taper pile embedded in elastic foundation supported by friction forces, and (b) defection and forces of pile segment

References

  1. KGS (2015), Korean Foundation Engineering Code, Korean Geotechnical Society (In Korean).
  2. AASHTO (2012), LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials.
  3. Albusoda, B.S. and Abbase, H.O. (2017), "Performance Assessment of Single and Group of Helical Piles Embedded in Expansive Soil", International Journal of Geo-engineering, Vol.8, No.25, https://doi.org/10.1186/s40703-017-0063-x.
  4. Bjerrum, L. (1957), "Norwegian Experience with Steel Piles to Rock", Geotechnique, Vol.7, No.2, pp.73-96. https://doi.org/10.1680/geot.1957.7.2.73
  5. Carnahan, B., Luther, H.A., and Wilkes, J.O. (1969), Applied Numerical Methods, John Wiley & Sons, NY, USA.
  6. Chen, Y.H., Chen, L., Wang, X., and Chen, G. (2015), "Critical Buckling Load Calculation of Piles based on Cusp Catastrophe Theory", Marine Geoscience & Geotechnology, Vol.33, Issue (3) pp.222-228.
  7. Coduto D.P. (2001), Foundation Design: Principles and Practices, Prentice-Hall, New Jersey, USA.
  8. Davisson, M.T. (1963), "Estimating Buckling Loads for Piles", Proceeding of 2nd Pan American Conference on Soil Mechanics and Foundation Engineering, Sao Paulo, Brazil, Vol.1, pp.351-369.
  9. Davisson, M.T. and Robinson, K.E. (1965), "Bending and Buckling of Partially Embedded Piles", Proceeding of 6th International Conference on Soil Mechanics and Foundation Engineering, Montreal, Canada, Vol.2, pp.243-246.
  10. Deng, T., Liu, Q., and Huang, M. (2017), "Buckling of Fully Embedded Single Piles by Using the Modified Vlasov Foundation Model", International Journal of Structural Stability and Dynamics, Vol.16, No.10, 1750007 (15 pages). https://doi.org/10.1142/S0219455417500079
  11. Gabr, M., Wang, J., and Kiger, S.A. (1994), "Effect of Boundary Conditions on Buckling of Friction Piles", Journal of Engineering Mechanics, ASCE, Vol.120, No.6, pp.1392-1400. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:6(1392)
  12. Gere, J.M. and Timoshenko, S.P. (1997), Mechanics of Materials, PWS Publishing Company, MA, USA.
  13. Heelis, M.E., Pavlovic, M.N., and West, R.P. (2004), "The Analytical Prediction of the Buckling Loads of Fully and Partially Embedded piles", Geotechnique, Vol.54, No.6, pp.363-373. https://doi.org/10.1680/geot.2004.54.6.363
  14. Hetenyi, M. (1946), Beams on elastic foundations, University of Michigan Press, MI, USA.
  15. Jeong, H., No, I., and Lee, Y. (2015), "Critical Buckling Characteristics of Micropiles under Axial Loads", Journal of the Korean Geotechnical Society, Vol.31, No.9, pp.39-51. https://doi.org/10.7843/kgs.2015.31.9.39
  16. Lee, J.K., Jeong, S., and Lee, J. (2014), "Natural Frequencies for Flexural and Torsional Vibrations of Beams on Pasternak Foundation", Soils and Foundations, Vol.54, No.6, pp.1202-1211. https://doi.org/10.1016/j.sandf.2014.11.013
  17. Liang, F., Zhang, H., and Huang, M. (2015), "Extreme Scour Effects of the Buckling of Bridge Piles Considering the Stress History of Soft Clay", Natural Hazards, Vol.77, No.2, pp.1143-1159. https://doi.org/10.1007/s11069-015-1647-4
  18. Prakash, S. (1987), "Buckling Loads of Fully Embedded Vertical Piles", Computers and Geotechnics, Vol.4, No.2, pp.61-83. https://doi.org/10.1016/0266-352X(87)90011-5
  19. Reddy, A.S. and Valsangkar, A.J. (1970), "Buckling of Fully and Partially Embedded Piles", Journal of Soil Mechanics and Foundation Division, ASCE, Vol.96, No.SM6, pp.1951-1965. https://doi.org/10.1061/JSFEAQ.0001480
  20. Rowe, R.K. and Booker J.R. (1981), "The behavior of Footings Resting on a Non-homogeneous Soil Mass with a Crust. Part I. Strip Footings", Canadian Geotechnical Journal, Vol.18, No.2, pp.250-264. https://doi.org/10.1139/t81-028
  21. Shanker, K., Basudhar, P.K., and Patra, N.R. (2007), "Buckling of Piles under Liquefied Soil Conditions", Geotechnical and Geological Engineering, Vol.25, No.3, pp.303-313. https://doi.org/10.1007/s10706-006-9111-6
  22. Vogt, N., Vogt, S., and Kellner, C. (2009), "Buckling of Slender Piles in Soft Soils", Bautechnik, Vol.86, No.1, pp.98-112. https://doi.org/10.1002/bate.200910046
  23. West, R.P., Heelis, M.E., Pavlovic, M.N., and Wylie, G.B. (1997), "The Stability of End-bearing Piles in a Non-homogeneous Elastic Foundation", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.21, No.12, pp.845-861. https://doi.org/10.1002/(SICI)1096-9853(199712)21:12<845::AID-NAG905>3.0.CO;2-7