DOI QR코드

DOI QR Code

Development of Measuring tools for Analysis of Elementary and Secondary School Students' Software Education Satisfaction

초중등학생 소프트웨어 교육 만족도 분석을 위한 측정 도구 개발

  • Received : 2019.11.18
  • Accepted : 2019.11.29
  • Published : 2019.12.31

Abstract

In order for education to be effective, it is necessary to properly evaluate the subjects. In order to increase the effectiveness of SW education, it is necessary to reconstruct the curriculum by analyzing the students' satisfaction with education and refluxing the results. Therefore, this study designed and developed the SW education satisfaction measurement tool to accurately measure students' satisfaction with SW education. The categories and items of satisfaction measurement tools were developed, validity was verified through expert verification and AHP analysis, and final items were selected through preliminary examination. Through this study, we developed a tool to measure the satisfaction of SW education, and it is expected that it can be helpful for meaningful education design.

교육이 효과적으로 이루어지기 위해서는 교육대상자들에 대한 평가가 적절하게 이루어질 필요가 있다. SW 교육의 효과성을 높이기 위해서는 교육에 대한 학생의 만족도를 분석하고, 그 결과를 바탕으로 교육과정을 재구성 할 필요가 있다. 이에 본 연구에서는 SW 교육에 대한 학생들의 만족도를 정확하게 측정할 수 있는 SW 교육 만족도 측정 도구 개발을 설계하고 진행하였다. 만족도 측정 도구의 범주 및 문항을 개발하고 전문가 검증 및 AHP 분석을 통해 타당도를 검증하였으며, 예비 검사를 통해 최종 문항을 선정하였다. 본 연구를 통해 SW 교육 만족도를 측정할 수 있는 도구를 개발하였으며, 이를 통해 유의미한 교육 설계에 도움을 줄 수 있을 것이라 기대한다.

Keywords

References

  1. Ahn S. H. (2016). Development of programming evaluation index for elementary and middle school SW education. Journal of Korean Society for Computer Education, 19(4), 11-20.
  2. Ayre, C., & Scally, A. J. (2014). Critical values for Lawshe’s content validity ratio: revisiting the original methods of calculation. Measurement and Evaluation in Counseling and Development, 47(1), 79-86. https://doi.org/10.1177/0748175613513808
  3. Barrett, P. T., & Kline, P. (1981). The observation to variable ratio in factor analysis. Personality Study & Group Behaviour.
  4. Comrey, A. L. (1973). A first course in factor analysis. New York, NY: Academic Press.
  5. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. psychometrika, 16(3), 297-334. https://doi.org/10.1007/BF02310555
  6. Jeong O. B.. (2010). Child Research and Statistical Methods. hagjisa.
  7. Kim Y.B. (2004) Development of Educational Satisfaction Survey Tool. Korea Institute for Curriculum and Evaluation.
  8. Lawshe, C. H. (1975). A quantitative approach to content validity 1. Personnel psychology, 28(4), 563-575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
  9. Lee, Hwan-Cheol, (2016). Study on Surveying the Actual Conditions and Evaluating the Effectiveness of SW Education in Elementary and Secondary Schools. KOFAC.
  10. Lee, S. H., & Pershing, J. A. (2002). Dimensions and design criteria for developing training reaction evaluations. Human Resource Development International, 5(2), 175-197. https://doi.org/10.1080/13678860110053678
  11. National Civil Service Development Institute. (2016). A Study on Improvement of Evaluation Items for Curriculum Satisfaction and Practical Application.
  12. Park P. W., & Shin S. G. (2019). A Study on the Content System and Curriculum Design for Elementary School Software Education. Journal of Information and Education, 23(3), 273-282.
  13. Tak J. G. (2007), Psychological Test, hagjisa.
  14. Wind, Y., & Saaty, T. L. (1980). Marketing applications of the analytic hierarchy process. Management science, 26(7), 641-658. https://doi.org/10.1287/mnsc.26.7.641
  15. Yu S. M. (2013). Learn SPSS statistical analysis for paper writing. hwangsogeoleum akademi.

Cited by

  1. The Case Study on Artificial Intelligence Based Maker Education for Pre-Service Teacher vol.21, pp.4, 2019, https://doi.org/10.9728/dcs.2020.21.4.701