DOI QR코드

DOI QR Code

Reduction of Inflammation and Enhancement of Motility after Pancreatic Islet Derived Stem Cell Transplantation Following Spinal Cord Injury

  • Karaoz, Erdal (Department of Histology & Embryology, Faculty of Medicine, Istinye University) ;
  • Tepekoy, Filiz (Department of Histology & Embryology, Faculty of Medicine, Istinye University) ;
  • Yilmaz, Irem (Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell)) ;
  • Subasi, Cansu (Center for Regenerative Medicine and Stem Cell Research & Manufacturing (LivMedCell)) ;
  • Kabatas, Serdar (Neurosurgery Clinic, Gaziosmanpasa Taksim Training and Research Hospital)
  • 투고 : 2018.02.09
  • 심사 : 2018.06.23
  • 발행 : 2019.03.01

초록

Objective : Spinal cord injury (SCI) is a very serious health problem, usually caused by a trauma and accompanied by elevated levels of inflammation indicators. Stem cell-based therapy is promising some valuable strategies for its functional recovery. Nestin-positive progenitor and/or stem cells (SC) isolated from pancreatic islets (PI) show mesenchymal stem cell (MSC) characteristics. For this reason, we aimed to analyze the effects of rat pancreatic islet derived stem cell (rPI-SC) delivery on functional recovery, as well as the levels of inflammation factors following SCI. Methods : rPI-SCs were isolated, cultured and their MSC characteristics were determined through flow cytometry and immunofluorescence analysis. The experimental rat population was divided into three groups : 1) laminectomy & trauma, 2) laminectomy & trauma & phosphate-buffered saline (PBS), and 3) laminectomy+trauma+SCs. Green fluorescent protein (GFP) labelled rPI-SCs were transplanted into the injured rat spinal cord. Their motilities were evaluated with Basso, Beattie and Bresnahan (BBB) Score. After 4-weeks, spinal cord sections were analyzed for GFP labeled SCs and stained for vimentin, $S100{\beta}$, brain derived neurotrophic factor (BDNF), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), vascular endothelial growth factor (VEGF) and proinflammatory (interleukin [IL]-6, transforming growth factor $[TGF]-{\beta}$, macrophage inflammatory protein [MIP]-2, myeloperoxidase [MPO]) and anti-inflammatory (IL-1 receptor antagonis) factors. Results : rPI-SCs were revealed to display MSC characteristics and express neural and glial cell markers including BDNF, glial fibrillary acidic protein (GFAP), fibronectin, microtubule associated protein-2a,b (MAP2a,b), ${\beta}3$-tubulin and nestin as well as anti-inflammatory prostaglandin E2 receptor, EP3. The BBB scores showed significant motor recovery in group 3. GFP-labelled cells were localized on the injury site. In addition, decreased proinflammatory factor levels and increased intensity of anti-inflammatory factors were determined. Conclusion : Transplantation of PI-SCs might be an effective strategy to improve functional recovery following spinal cord trauma.

키워드

참고문헌

  1. Abdullahi D, Annuar AA, Mohamad M, Aziz I, Sanusi J : Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models. Rev Neurosci 28 : 15-20, 2017 https://doi.org/10.1515/revneuro-2016-0050
  2. Aggarwal S, Pittenger MF : Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105 : 1815-1822, 2005 https://doi.org/10.1182/blood-2004-04-1559
  3. Ahuja CS, Nori S, Tetreault L, Wilson J, Kwon B, Harrop J, et al. : Traumatic spinal cord injury-repair and regeneration. Neurosurgery 80 (3S) : S9-S22, 2017 https://doi.org/10.1093/neuros/nyw080
  4. Aras Y, Sabanci PA, Kabatas S, Duruksu G, Subasi C, Erguven M, et al. : The effects of adipose tissue-derived mesenchymal stem cell transplantation during the acute and subacute phases following spinal cord injury. Turk Neurosurg 26 : 127-139, 2016
  5. Basso DM, Beattie MS, Bresnahan JC : A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12 : 1-21, 1995 https://doi.org/10.1089/neu.1995.12.1
  6. Blum R, Konnerth A : Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 20 : 70-78, 2005 https://doi.org/10.1152/physiol.00042.2004
  7. Chen Y, Tang Y, Vogel LC, Devivo MJ : Causes of spinal cord injury. Top Spinal Cord Inj Rehabil 19 : 1-8, 2013
  8. Choi H, Liao WL, Newton KM, Onario RC, King AM, Desilets FC, et al. : Respiratory abnormalities resulting from midcervical spinal cord injury and their reversal by serotonin 1A agonists in conscious rats. J Neurosci 25 : 4550-4559, 2005 https://doi.org/10.1523/JNEUROSCI.5135-04.2005
  9. Choi Y, Ta M, Atouf F, Lumelsky N : Adult pancreas generates multipotent stem cells and pancreatic and nonpancreatic progeny. Stem Cells 22 : 1070-1084, 2004 https://doi.org/10.1634/stemcells.22-6-1070
  10. Coskun E, Ercin M, Gezginci-Oktayoglu S : The role of epigenetic regulation and pluripotency-related micrornas in differentiation of pancreatic stem cells to beta cells. J Cell Biochem 119 : 455-467, 2017 https://doi.org/10.1002/jcb.26203
  11. Davani B, Ikonomou L, Raaka BM, Geras-Raaka E, Morton RA, Marcus-Samuels B, et al. : Human islet-derived precursor cells are mesenchymal stromal cells that differentiate and mature to hormone-expressing cells in vivo. Stem Cells 25 : 3215-3222, 2007 https://doi.org/10.1634/stemcells.2007-0323
  12. Deltour L, Leduque P, Blume N, Madsen O, Dubois P, Jami J, et al. : Differential expression of the two nonallelic proinsulin genes in the developing mouse embryo. Proc Natl Acad Sci U S A 90 : 527-531, 1993 https://doi.org/10.1073/pnas.90.2.527
  13. Edlund H : Pancreatic organogenesis--developmental mechanisms and implications for therapy. Nat Rev Genet 3 : 524-532, 2002 https://doi.org/10.1038/nrg841
  14. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F : Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290 : 763-769, 2002 https://doi.org/10.1006/bbrc.2001.6270
  15. Garcia-Altes A, Perez K, Novoa A, Suelves JM, Bernabeu M, Vidal J, et al. : Spinal cord injury and traumatic brain injury: a cost-of-illness study. Neuroepidemiology 39 : 103-108, 2012 https://doi.org/10.1159/000338297
  16. Gensel JC, Zhang B : Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 1619 : 1-11, 2015 https://doi.org/10.1016/j.brainres.2014.12.045
  17. Goldman SA : Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18 : 174-188, 2016 https://doi.org/10.1016/j.stem.2016.01.012
  18. Hajdukova L, Sobek O, Prchalova D, Bilkova Z, Koudelkova M, Lukaskova J, et al. : Biomarkers of brain damage: S100B and NSE concentrations in cerebrospinal fluid--a normative study. Biomed Res Int 2015 : 379071, 2015 https://doi.org/10.1155/2015/379071
  19. Hajos F, Kalman M : Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. II. Mesencephalon, rhombencephalon and spinal cord. Exp Brain Res 78 : 164-173, 1989
  20. Hausmann ON : Post-traumatic inflammation following spinal cord injury. Spinal Cord 41 : 369-378, 2003 https://doi.org/10.1038/sj.sc.3101483
  21. Heit JJ, Kim SK : Embryonic stem cells and islet replacement in diabetes mellitus. Pediatr Diabetes 5 Suppl 2 : 5-15, 2004 https://doi.org/10.1111/j.1399-543X.2004.00074.x
  22. Himes BT, Neuhuber B, Coleman C, Kushner R, Swanger SA, Kopen GC, et al. : Recovery of function following grafting of human bone marrowderived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 20 : 278-296, 2006 https://doi.org/10.1177/1545968306286976
  23. Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, et al. : Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci U S A 99 : 8932-8937, 2002 https://doi.org/10.1073/pnas.132252399
  24. Joe AW, Gregory-Evans K : Mesenchymal stem cells and potential applications in treating ocular disease. Curr Eye Res 35 : 941-952, 2010 https://doi.org/10.3109/02713683.2010.516466
  25. Juan-Mateu J, Rech TH, Villate O, Lizarraga-Mollinedo E, Wendt A, Turatsinze JV, et al. : Neuron-enriched RNA-binding proteins regulate pancreatic beta cell function and survival. J Biol Chem 292 : 3466-3480, 2017 https://doi.org/10.1074/jbc.M116.748335
  26. Karaoz E, Ayhan S, Gacar G, Aksoy A, Duruksu G, Okcu A, et al. : Isolation and characterization of stem cells from pancreatic islet: pluripotency, differentiation potential and ultrastructural characteristics. Cytotherapy 12 : 288-302, 2010 https://doi.org/10.3109/14653240903580296
  27. Karaoz E, Kabatas S, Duruksu G, Okcu A, Subasi C, Ay B, et al. : Reduction of lesion in injured rat spinal cord and partial functional recovery of motility after bone marrow derived mesenchymal stem cell transplantation. Turk Neurosurg 22 : 207-217, 2012
  28. Kim JW, Ha KY, Molon JN, Kim YH : Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation. Spine (Phila Pa 1976) 38 : E1065-E1074, 2013 https://doi.org/10.1097/BRS.0b013e31829839fa
  29. King VR, Hewazy D, Alovskaya A, Phillips JB, Brown RA, Priestley JV : The neuroprotective effects of fibronectin mats and fibronectin peptides following spinal cord injury in the rat. Neuroscience 168 : 523-530, 2010 https://doi.org/10.1016/j.neuroscience.2010.03.040
  30. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH : Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103 : 1669-1675, 2004 https://doi.org/10.1182/blood-2003-05-1670
  31. Lindsay SL, Barnett SC : Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair? Neurochem Int 106 : 101-107, 2017 https://doi.org/10.1016/j.neuint.2016.08.001
  32. Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, et al. : Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 5 : e9252, 2010 https://doi.org/10.1371/journal.pone.0009252
  33. Mothe AJ, Tator CH : Advances in stem cell therapy for spinal cord injury. J Clin Invest 122 : 3824-3834, 2012 https://doi.org/10.1172/JCI64124
  34. Nemeth K, Leelahavanichkul A, Yuen PS, Mayer B, Parmelee A, Doi K, et al. : Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15 : 42-49, 2009 https://doi.org/10.1038/nm.1905
  35. Oh SK, Jeon SR : Current concept of stem cell therapy for spinal cord injury: a review. Korean J Neurotrauma 12 : 40-46, 2016 https://doi.org/10.13004/kjnt.2016.12.2.40
  36. O'Hara CM, Egar MW, Chernoff EA : Reorganization of the ependyma during axolotl spinal cord regeneration: changes in intermediate filament and fibronectin expression. Dev Dyn 193 : 103-115, 1992 https://doi.org/10.1002/aja.1001930202
  37. Okada S, Nakamura M, Mikami Y, Shimazaki T, Mihara M, Ohsugi Y, et al. : Blockade of interleukin-6 receptor suppresses reactive astrogliosis and ameliorates functional recovery in experimental spinal cord injury. J Neurosci Res 76 : 265-276, 2004 https://doi.org/10.1002/jnr.20044
  38. Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, et al. : Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 104 : 11002-11007, 2007 https://doi.org/10.1073/pnas.0704421104
  39. Park JR, Kim E, Yang J, Lee H, Hong SH, Woo HM, et al. : Isolation of human dermis derived mesenchymal stem cells using explants culture method: expansion and phenotypical characterization. Cell Tissue Bank 16 : 209-218, 2015 https://doi.org/10.1007/s10561-014-9471-8
  40. Parr AM, Kulbatski I, Zahir T, Wang X, Yue C, Keating A, et al. : Transplanted adult spinal cord-derived neural stem/progenitor cells promote early functional recovery after rat spinal cord injury. Neuroscience 155 : 760-770, 2008 https://doi.org/10.1016/j.neuroscience.2008.05.042
  41. Pelletier J, Roudier E, Abraham P, Fromy B, Saumet JL, Birot O, et al. : VEGF-A promotes both pro-angiogenic and neurotrophic capacities for nerve recovery after compressive neuropathy in rats. Mol Neurobiol 51 : 240-251, 2015 https://doi.org/10.1007/s12035-014-8754-1
  42. Pierret C, Spears K, Maruniak JA, Kirk MD : Neural crest as the source of adult stem cells. Stem Cells Dev 15 : 286-291, 2006 https://doi.org/10.1089/scd.2006.15.286
  43. Schultke E, Griebel RW, Juurlink BH : Quercetin administration after spinal cord trauma changes S-100 levels. Can J Neurol Sci 37 : 223-228, 2010 https://doi.org/10.1017/S0317167100009963
  44. Seaberg RM, Smukler SR, Kieffer TJ, Enikolopov G, Asghar Z, Wheeler MB, et al. : Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat Biotechnol 22 : 1115-1124, 2004 https://doi.org/10.1038/nbt1004
  45. Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R, et al. : The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell 8 : 281-293, 2011 https://doi.org/10.1016/j.stem.2011.01.015
  46. Snyder EY, Teng YD : Stem cells and spinal cord repair. N Engl J Med 366 : 1940-1942, 2012 https://doi.org/10.1056/NEJMcibr1200138
  47. Suzuki A, Nakauchi H, Taniguchi H : Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53 : 2143-2152, 2004 https://doi.org/10.2337/diabetes.53.8.2143
  48. Tator CH : Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery 59 : 957-982; discussion 982-957, 2006 https://doi.org/10.1227/01.NEU.0000245591.16087.89
  49. Tepekoy F, Ozturk S, Sozen B, Ozay RS, Akkoyunlu G, Demir N : CD90 and CD105 expression in the mouse ovary and testis at different stages of postnatal development. Reprod Biol 15 : 195-204, 2015 https://doi.org/10.1016/j.repbio.2015.10.004
  50. Tobias CA, Han SS, Shumsky JS, Kim D, Tumolo M, Dhoot NO, et al. : Alginate encapsulated BDNF-producing fibroblast grafts permit recovery of function after spinal cord injury in the absence of immune suppression. J Neurotrauma 22 : 138-156, 2005 https://doi.org/10.1089/neu.2005.22.138
  51. Uccelli A, Benvenuto F, Laroni A, Giunti D : Neuroprotective features of mesenchymal stem cells. Best Pract Res Clin Haematol 24 : 59-64, 2011 https://doi.org/10.1016/j.beha.2011.01.004
  52. Vanegas H, Schaible HG : Prostaglandins and cyclooxygenases [correction of cycloxygenases] in the spinal cord. Prog Neurobiol 64 : 327-363, 2001 https://doi.org/10.1016/S0301-0082(00)00063-0
  53. Volarevic V, Al-Qahtani A, Arsenijevic N, Pajovic S, Lukic ML : Interleukin-1 receptor antagonist (IL-1Ra) and IL-1Ra producing mesenchymal stem cells as modulators of diabetogenesis. Autoimmunity 43 : 255- 263, 2010 https://doi.org/10.3109/08916930903305641
  54. Volkman R, Offen D : Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 35 : 1867-1880, 2017 https://doi.org/10.1002/stem.2651
  55. Wang CY, Chen JK, Wu YT, Tsai MJ, Shyue SK, Yang CS, et al. : Reduction in antioxidant enzyme expression and sustained inflammation enhance tissue damage in the subacute phase of spinal cord contusive injury. J Biomed Sci 18 : 13, 2011 https://doi.org/10.1186/1423-0127-18-13
  56. Wang YH, Chen J, Zhou J, Nong F, Lv JH, Liu J : Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells. Exp Ther Med 13 : 203-207, 2017 https://doi.org/10.3892/etm.2016.3941
  57. Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, et al. : Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175 : 1005-1015, 2006 https://doi.org/10.1083/jcb.200606062
  58. Xie F, Zheng B : White matter inhibitors in CNS axon regeneration failure. Exp Neurol 209 : 302-312, 2008 https://doi.org/10.1016/j.expneurol.2007.07.005
  59. Xu X, D'Hoker J, Stange G, Bonne S, De Leu N, Xiao X, Van de Casteele M, et al. : Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132 : 197-207, 2008 https://doi.org/10.1016/j.cell.2007.12.015
  60. Yang Z, Bramlett HM, Moghieb A, Yu D, Wang P, Lin F, et al. : Temporal profile and severity correlation of a panel of rat spinal cord injury protein biomarkers. Mol Neurobiol 55 : 2174-2184, 2017 https://doi.org/10.1007/s12035-017-0424-7
  61. Yilmaz S, Inandiklioglu N, Yildizdas D, Subasi C, Acikalin A, Kuyucu Y, et al. : Mesenchymal stem cell: does it work in an experimental model with acute respiratory distress syndrome? Stem Cell Rev 9 : 80-92, 2013 https://doi.org/10.1007/s12015-012-9395-2
  62. Zhu Y, Uezono N, Yasui T, Nakashima K : Neural stem cell therapy aiming at better functional recovery after spinal cord injury. Dev Dyn 247 : 75-84, 2017 https://doi.org/10.1002/dvdy.24558
  63. Zulewski H, Abraham EJ, Gerlach MJ, Daniel PB, Moritz W, Muller B, et al. : Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50 : 521-533, 2001 https://doi.org/10.2337/diabetes.50.3.521

피인용 문헌

  1. Cutting-edge biotechnological advancement in islet delivery using pancreatic and cellular approaches vol.7, pp.3, 2021, https://doi.org/10.2144/fsoa-2020-0105